DOP 4 - 021 - 160089 - 2024/01

Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)

EJOT

Inhaltsverzeichnis/ Table of contents

Seite/ Page

-	Leistungserklärung2	
-	Declaration of Performance	
-	Декларация за изпълнение6	
-	Prohlášení o vlastnostech8	
-	Erklæring om ydeevne10	
-	Tulemusdeklaratsioon12	
-	Declaración de prestaciones14	
-	Suoritustasoilmoitus16	
-	Déclaration des performances18	
-	Δήλωση επιδόσεων20	
-	Izjava o svojstvima22	
-	Teljesítménynyilatkozat24	
-	Dichiarazione di prestazione26	
-	Eksploatacinių savybių deklaracija28	
-	Veiktspējas deklarācija 30	
-	Dikjarazzjoni ta' Prestazzjoni32	
-	Prestatieverklaring34	
-	Deklaracja właściwości użytkowych	
-	Declaração de Desempenho38	
-	Declarația de performanță40	
-	Förklaring om prestanda42	
-	Vyhlásenie o výkone 44	
-	Izjava o uspešnosti 46	
-	Annex48	
		- Декларация за изпълнение

Leistungserklärung			EJOT
Nr.:	4 - 021 - 160089 - 2024/01		
1.)	Eindeutiger Kenncode des Produkttyps: Injektionssystem EJOT Multifix Vinylester /	Sormat ITH Viny	lester für Mauerwerk (033)
2.)	Verwendungszweck: Metall-Injektionsdübel zur Verankerung im M	Mauerwerk	
3.)	Hersteller: EJOT SE & Co. KG, Market Unit Constructio	n, In der Stockw	riese 35, 57334 Bad Laasphe - Germany
4.)	System zur Bewertung und Überprüfung de System 1	er Leistungsbes	tändigkeit:
5.)	Europäisches Bewertungsdokument Europäisch Technische Bewertung: Technische Bewertungsstelle: Notifizierte Stelle:		0604 es Institut für Bautechnik, Berlin echnische Universität Darmstadt
6.) a)	Erklärte Leitung(en): Mechanische Festigkeit und Standsicherheit (B	WR 1) und Siche	rheit bei der Nutzung (BWR 4)
Wesent	iche Merkmale		Leistungswerte
Charakt Einwirku	eristischer Widerstand für statische und quasista ingen	tische	Siehe Anhang B 5, B 6, C 1 bis C 56
Charakt Einwirku	eristischer Widerstand und Verschiebungen für s Ing	eismische	Leistung nicht bewertet

Leistungserklärung

Nr.: 4 - 021 - 160089 - 2024/01

b) Brandschutz (BWR 2)

Wesentliche Merkmale	Leistungswerte
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Siehe Anhang C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 und C52

c) Hygiene, Gesundheit und Umweltschutz (BWR 3)		
Wesentliche Merkmale	Leistungswerte	
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet	

d) Schallschutz (BWR 5)	
Wesentliche Merkmale Leistungswerte	

e)	Energieeinsparung und Wärmeschutz (BWR 6)	
Wesent	liche Merkmale	Leistungswerte

Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)		
Wesentliche Merkmale	Leistungswerte	

Die Leistung des vorstehenden Produkts entspricht der erklärten Leitung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der oben genannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr. Jens Weber

(Name)

(Unterschrift)

Bad Laasphe, 28.01.2025

(Ort und Datum der Ausstellung)

	laration of Performance		EJOT
No	4 - 021 - 160089 - 2024/01		
1.)	Unique identification code of the produ	ct-type:	
	Injection system EJOT Multifix Vinyleste	er / Sormat ITH Vinyleste	er for masonry (033)
2.) Intended use:			
	Metal Injection anchors for use in maso	nry	
3.)	Manufacturer:		
	EJOT SE & Co. KG, Market Unit Constru	ction, In der Stockwiese	e 35, 57334 Bad Laasphe - Germany
4.)	System of AVCP:		
	System 1		
5.)	European Assesment Document:	EAD 330076-01-060	4
	European Technical Assessment:	ETA-16/0089	
	Technical assessment body:		stitut für Bautechnik, Berlin
	Notified body:	2873 - IFSW - Techr	nische Universität Darmstadt
6.)	Declared Performance:		
a)	Mechanical resistance and stability (BWR 1) and safety and accessib	bility (BWR 4)
Essen	tial characteristic	Per	formance
Chara	cteristic resistance for static and quasi-static lo	ading See	e Annexes B 5, B 6, C 1 to C 56
	cteristic resistance and displacements for seis	nic No	performance assessed
loadin	9		

Declaration of Performance

No 4 - 021 - 160089 - 2024/01

b) Safety in case of fire (BWR 2)		
Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire under tension and shear loading with and without lever arm. Minimum edge distances and spacing	See Annexes C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44,	

c) Hygiene, health and the environment (BWR 3)	
Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Protection against noise (BWR 5)		
Essential characteristic Performance		

Energy economy and heat retention (BWR 6)	
Essential characteristic Performance	

f)	Sustainable use of natural resources (BWR 7)	
Essential	characteristic	Performance

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Dr. Jens Weber

(Name)

(Signature

Bad Laasphe, 28.01.2025

(Place and date of issue)

ДЕКЛ	ІАРАЦИЯ ЗА ЕКСПЛОАТАЦИОН	НИ ПОКАЗ	АТЕЛИ	EJOT
Nº	4 - 021 - 160089 - 2024/01			EJUI
1.)	Уникален идентификационен код на типа Injection system EJOT Multifix Vinylester / S		lester for masonr	y (033)
2.)	Предвидена употреба/употреби: Метални анкери за инжектиране за използ	ване в зидари	a	
3.)	Производител: EJOT SE & Co. KG, Market Unit Construction	n, In der Stockv	viese 35, 57334 B	ad Laasphe - Germany
4.)	Система/системи за оценяване и провер Сиситема 1	ка на постоян	ството на експл	оатационните показатели:
5.)	Европейска техническа оценка: Орган за техническа оценка:		-0604 es Institut für Bau echnische Univer	
6.) a)	Декларирани експлоатационни показател Механична устойчивост и стабилност (BWR *		т и достъпност (В	WR 4)
Ochopui			-	
	и характеристики ерна устойчивост при статично и квазистатично	о натоварване	Показатели	Б 5, Б 6, В 1 до В 56
Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели	
Характе Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели Вж. приложения	
Характе Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели Вж. приложения	
Характе Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели Вж. приложения	
Характе Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели Вж. приложения	
Характе Характе	ерна устойчивост при статично и квазистатично ерни съпротивления и премествания за сеизми		Показатели Вж. приложения	

ДЕКЛАРАЦИЯ ЗА ЕКСПЛОАТАЦИОННИ ПОКАЗАТЕЛИ

Nº 4 - 021 - 160089 - 2024/01

Безопасност в случай на пожар (BWR 2)		
Основни характеристики	Показатели	
Реакция при пожар	Клас А1	
Устойчивост на огън при натоварване на опън и срязване с и без рамо на лоста. Минимални разстояния между ръбовете и разстояния между тях	Вж. приложения С2, С7, С8, С13, С14, С17, С18, С19, С20, С37, С38, С43, С44, С45, С46, С51 и С52.	

с) Хигиена, здраве и околна среда (BWR 3)	
Основни характеристики	Показатели
Съдържание, емисии и/или изпускане на опасни вещества	Няма оценка на изпълнението

d) Защита от шум (BWR 5)	
Основни характеристики	Показатели

e)	Икономия на енергия и запазване на топлината (BWR 6)	
Основни	1 характеристики	Показатели

Устойчиво използване на природните ресурси (BWR 7)	
Основни характеристики	Показатели

Експлоатационните показатели на продукта, посочени по-горе, са в съответствие с декларираните експлоатационни показатели. Настоящата декларация за експлоатационни показатели се издава в съответствие с Регламент (EC) № 305/2011, като отговорността за нея се носи изцяло от посочения по-горе производител.

Подписано за и от името на производителя от:

Dr. Jens Weber

(Име)

(Подпис)

Bad Laasphe, 28.01.2025

(Място и Дата)

PROF	ILÁŠENÍ O VLASTNOSTECH		EJOT
č.	4 - 021 - 160089 - 2024/01		EJUI
1.)	Jedinečný identifikační kód typu výrobku: Injection system EJOT Multifix Vinylester /	Sormat ITH Viny	ylester for masonry (033)
2.)	Zamýšlené/zamýšlená použití: Kovové injektážní kotvy pro použití ve zdivu	u	
3.)	Výrobce: EJOT SE & Co. KG, Market Unit Construction	on, In der Stockw	wiese 35, 57334 Bad Laasphe - Germany
4.)	Systém/systémy POSV: Systém 1		
5.)	Evropský dokument pro posuzování: Evropské technické posouzení: Subjekt pro technické posuzování: Oznámený subjekt/oznámené subjekty:		1-0604 nes Institut für Bautechnik, Berlin Technische Universität Darmstadt
6.) a) základní	Deklarovaná vlastnost/Deklarované vlastn Mechanická odolnost a stabilita (BWR 1) a bez		pnost (BWR 4) vlastnosti výrobku
Charakte	eristická odolnost při statickém a kvazistatickém	zatížení	Viz přílohy B 5, B 6, C 1 až C 56.
Characte loading	eristic resistance and displacements for seismic		Žádný hodnocený výkon

PROHLÁŠENÍ O VLASTNOSTECH

č. 4 - 021 - 160089 - 2024/01

b)	Bezpečnost při požáru (BWR 2)	
základní	charakteristiky	vlastnosti výrobku
Reakce ı	na oheň	Třída A1
	t proti požáru při zatížení tahem a smykem s a bez ramene páky. í vzdálenosti a rozteče hran	Viz přílohy C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 a C52.

c) Hygiena, zdraví a životní prostředí (BWR 3)	
základní charakteristiky	vlastnosti výrobku
Obsah, emise a/nebo uvolňování nebezpečných látek	Žádný hodnocený výkon

d) Ochrana proti hluku (BWR 5)	Ochrana proti hluku (BWR 5)	
základní charakteristiky	vlastnosti výrobku	

f)	Udržitelné využívání přírodních zdrojů (BWR 7)	
základní	charakteristiky	vlastnosti výrobku

Vlastnosti výše uvedeného výrobku jsou ve shodě se souborem deklarovaných vlastností. Toto prohlášení o vlastnostech se v souladu s nařízením (EU) č. 305/2011 vydává na výhradní odpovědnost výrobce uvedeného výše.

Podepsáno za výrobce a jeho jménem:

Dr. Jens Weber

(jméno)

(podpis

Bad Laasphe, 28.01.2025

(místo a datum vydání)

YDEEVNEDEKLARATION			EJOT
Nr.:	4 - 021 - 160089 - 2024/01		
1.)	Varetypens unikke identifikationskode: Injection system EJOT Multifix Vinylester /	Sormat ITH Vinyl	lester for masonry (033)
2.)	Tilsigtet anvendelse: Injektionsankre af metal til brug i murværk		
3.)	Fabrikant: EJOT SE & Co. KG, Market Unit Construction	on, In der Stockw	viese 35, 57334 Bad Laasphe - Germany
4.)	System eller systemer til vurdering og kon System 1	trol af konstanse	en af ydeevnen:
5.)	Europæisk vurderingsdokument: Europæisk teknisk vurdering: Teknisk vurderingsorgan: Notificeret organ/notificerede organer:		-0604 es Institut für Bautechnik, Berlin rechnische Universität Darmstadt
 6.) Deklareret ydeevne/deklarerede ydeevner: a) Mekanisk modstand og stabilitet (BWR 1) og sikkerhed og tilgængelighed (BWR 4) 			
Væsentli	ge egenskaber		Ydelse
Karakter	istisk modstand ved statisk og kvasistatisk bela	stning	Se bilag B 5, B 6, C 1 til C 56
Karakter loading	istisk modstand og forskydninger for seismisk		Ingen præstation vurderet

YDEEVNEDEKLARATION

Nr.: 4 - 021 - 160089 - 2024/01

b) Sikkerhed ved brand (BWR 2)

Væsentlige egenskaber	Ydelse
Reaktioner på brand	Klasse A1
Modstandsdygtighed over for brand under træk- og forskydningsbelastning med og uden løftestang. Minimum kantafstande og mellemrum	Se bilag C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 og C52.

c) Hygiejne, sundhed og miljø (BWR 3)		
Væsentlige egenskaber	Ydelse	
Indhold, udledning og/eller frigivelse af farlige stoffer	Ingen præstation vurderet	

d) Beskyttelse mod støj (BWR 5)	
Væsentlige egenskaber	Ydelse

e) Energibesparelser og varmebinding (BWR 6)	
Væsentlige egenskaber	Ydelse

Bæredygtig udnyttelse af naturressourcer (BWR 7)		
Væsentlige egenskaber Ydelse		

Ydeevnen for den vare, der er anført ovenfor, er i overensstemmelse med den deklarerede ydeevne. Denne ydeevnedeklaration er udarbejdet i overensstemmelse med forordning (EU) nr. 305/2011 på eneansvar af den fabrikant, der er anført ovenfor.

Underskrevet for fabrikanten og på dennes vegne af:

Dr. Jens Weber

(navn)

(underskrift)

Bad Laasphe, 28.01.2025

(sted og dato for udstedelse)

TOIMIVUSDEKLARATSIOON			EJOT
nr	4 - 021 - 160089 - 2024/01		EJUI
1.)	Tootetüübi kordumatu identifitseerimiskood: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)		
2.)	Kavandatud kasutusala(d): Metallist süstiankrud müüritise sissepaneku	ıks	
3.)	Tootja: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany		
4.)	Toimivuse püsivuse hindamise ja kontrolli Süsteem 1	süsteem:	
5.)	Euroopa hindamisdokument: Euroopa tehniline hinnang: Tehnilise hindamise asutus: Teavitatud asutus(ed):		I-0604 es Institut für Bautechnik, Berlin Fechnische Universität Darmstadt
6.) a)	Deklareeritud toimivus: Mehaaniline vastupidavus ja stabiilsus (BWR 1) ning ohutus ja ju	
Põhioma		ormuse korral	Toimivus Vt lisad B 5, B 6, C 1-C 56.
Iseloomulik vastupidavus staatilise ja kvaasistaatilise koormuse korral Seismilise vastupidavuse ja nihkete iseloomulikud omadused koormus			Tulemuslikkust ei ole hinnatud

TOIMIVUSDEKLARATSIOON

nr 4 - 021 - 160089 - 2024/01

b) Ohutus tulekahju korral (BWR 2)		
Põhiomadused	Toimivus	
Reaktsioon tulekahjule	Klass A1	
Tulepüsivus pinge- ja nihkekoormuse korral koos ja ilma hoovavarrega. Minimaalsed serva kaugused ja vahekaugused	Vt lisad C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 ja C52.	

c) Hügieen, tervis ja keskkond (BWR 3)	
Põhiomadused	Toimivus
Ohtlike ainete sisaldus, heide ja/või vabanemine	Tulemuslikkust ei ole hinnatud

d) Kaitse müra eest (BWR 5)	
Toimivus	

e)	Energiasääst ja soojapidavus (BWR 6)	
Põhiomadused		Toimivus

f) Loodusvarade säästev kasutamine (BWR 7)	
Põhiomadused	Toimivus

Eespool kirjeldatud toote toimivus vastab deklareeritud toimivusele. Käesolev toimivusdeklaratsioon on välja antud kooskõlas määrusega (EL) nr 305/2011 eespool nimetatud tootja ainuvastutusel.

Tootja poolt ja nimel allkirjastanud:

Dr. Jens Weber (Nimi)

(Allkiri

Bad Laasphe, 28.01.2025

(Koht ja kuupäev)

DECLARACIÓN DE PRESTACIONES		EJOT
no	4 - 021 - 160089 - 2024/01	
1.)	Código de identificación única del producto tipo: Injection system EJOT Multifix Vinylester / Sormat ITH Viny	lester for masonry (033)
2.)	Usos previstos: Anclajes de inyección metálicos para mampostería	
3.)	Fabricante: EJOT SE & Co. KG, Market Unit Construction, In der Stock	wiese 35, 57334 Bad Laasphe - Germany
4.)	Sistemas de evaluación y verificación de la constancia de Sistema 1	e las prestaciones (EVCP):
5.)		I-0604 es Institut für Bautechnik, Berlin Fechnische Universität Darmstadt
6.) a) Caracter	Prestaciones declaradas: Resistencia mecánica y estabilidad (BWR 1) y seguridad y accesibilidad (BWR 4) cterísticas esenciales Prestaciones	
Resister	ncia característica para cargas estáticas y cuasiestáticas	Véanse los anexos B 5, B 6, C 1 a C 56
Resister sísmica	icia y desplazamientos característicos para cargas sísmicas	No se evalúa el rendimiento

DECLARACIÓN DE PRESTACIONES

b) Seguridad en caso de incendio (BWR 2)	
Características esenciales	Prestaciones
Reacción al fuego	Clase A1
Resistencia al fuego bajo carga de tracción y cizallamiento con y sin brazo de palanca. Distancias y separaciones mínimas de los bordes	Véanse los anexos C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 y C52.

c) Higiene, salud y medio ambiente (BWR 3)	
Características esenciales	Prestaciones
Contenido, emisión y/o liberación de sustancias peligrosas	No se evalúa el rendimiento

d) Protección contra el ruido (BWR 5)	
Características esenciales	Prestaciones

e)	Ahorro de energía y retención del calor (BWR 6)	
Caracte	rísticas esenciales	Prestaciones

f) Uso sostenible de los recursos naturales (BWR 7)	
Características esenciales	Prestaciones

Las prestaciones del producto identificado anteriormente son conformes con el conjunto de prestaciones declaradas. La presente declaración de prestaciones se emite, de conformidad con el Reglamento (UE) no 305/2011, bajo la sola responsabilidad del fabricante arriba identificado.

Firmado por y en nombre del fabricante por:

Dr. Jens Weber

(nombre)

(firma)

Bad Laasphe, 28.01.2025

(lugar y fecha de emisión)

SUORITUSTASOILMOITUS		
Nro	4 - 021 - 160089 - 2024/01	EJOT
1.)	Tuotetyypin yksilöllinen tunniste: Injection system EJOT Multifix Vinylester / Sormat ITH Viny	lester for masonry (033)
2.)	Aiottu käyttötarkoitus (aiotut käyttötarkoitukset): Muurauksessa käytettävät metalliset injektioankkurit	
3.)	Valmistaja: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany	
4.)	Suoritustason pysyvyyden arvioinnissa ja varmentamises Järjestelmä 1	sa käytetty järjestelmä/käytetyt järjestelmät:
5.)		-0604 es Institut für Bautechnik, Berlin rechnische Universität Darmstadt
6.) a) Peruson	Ilmoitettu suoritustaso/ilmoitetut suoritustasot: Mekaaninen kestävyys ja vakavuus (BWR 1) sekä turvallisuus j ninaisuudet	a saavutettavuus (BWR 4) Tuotteen suoritustaso
Ominais	kestävyys staattisessa ja kvasistaattisessa kuormituksessa	Ks. liitteet B 5, B 6, C 1-C 56.
Seismis kuormitu	en maanjäristyksen ominaisvastus ja -siirtymät us	Suorituskykyä ei ole arvioitu

SUORITUSTASOILMOITUS

Nro 4 - 021 - 160089 - 2024/01

b) Turvallisuus tulipalon sattuessa (BWR 2)	
Perusominaisuudet	Tuotteen suoritustaso
Reagointi tulipaloon	Luokka A1
Palonkestävyys jännitys- ja leikkauskuormituksessa, kun ja kun ilman vipuvarsi. Reunojen vähimmäisetäisyydet ja -välit	Ks. liitteet C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 ja C52.

c) Hygienia, terveys ja ympäristö (BWR 3)	
Perusominaisuudet	Tuotteen suoritustaso
Vaarallisten aineiden pitoisuus, päästöt ja/tai vapautuminen	Suorituskykyä ei ole arvioitu

d) Suojaus melua vastaan (BWR 5)	
Perusominaisuudet	Tuotteen suoritustaso

e) Energiansäästö ja lämmöntalteenotto (BWR 6)	
aisuudet	Tuotteen suoritustaso
2	isuudet

f) Luonnonvarojen kestävä käyttö (BWR 7)	Luonnonvarojen kestävä käyttö (BWR 7)	
Perusominaisuudet	Tuotteen suoritustaso	

Edellä yksilöidyn tuotteen suoritustaso on ilmoitettujen suoritustasojen joukon mukainen. Tämä suoritustasoilmoitus on asetuksen (EU) N:o 305/2011 mukaisesti annettu edellä ilmoitetun valmistajan yksinomaisella vastuulla.

Valmistajan puolesta allekirjoittanut:

Dr. Jens Weber

(nimi)

(allekirjoitus

Bad Laasphe, 28.01.2025

(paikka ja päivämäärä)

DÉCLARATION DES PERFORMANCES		
No	4 - 021 - 160089 - 2024/01	LJUI
1.)	Code d'identification unique du produit type: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)	
2.)	Usage(s) prévu(s): Ancrages métalliques à injection pour utilisation dans la maçonnerie	
3.)	Fabricant: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany	
4.)	Système(s) d'évaluation et de vérification de la constance Système 1	des performances:
5.)	-	-0604 es Institut für Bautechnik, Berlin echnische Universität Darmstadt
6.) a) Caractér		
	ce caractéristique pour les charges statiques et quasi-statiques	Voir annexes B 5, B 6, C 1 à C 56
Résistar sismique	nce et déplacements caractéristiques pour les charges sismiques	Pas de performance évaluée

DÉCLARATION DES PERFORMANCES

No 4 - 021 - 160089 - 2024/01

b) Sécurité en cas d'incendie (REB 2)	
Caractéristiques essentielles	Performances du produit
Réaction au feu	Classe A1
Résistance au feu sous charge de traction et de cisaillement avec et sans bras de levier. Distances et espacements minimaux entre les bords	Voir annexes C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 et C52.

c) Hygiène, santé et environnement (REB 3)	
Caractéristiques essentielles	Performances du produit
Contenu, émission et/ou rejet de substances dangereuses	Pas de performance évaluée

d) Protection contre le bruit (REB 5)	
Caractéristiques essentielles	Performances du produit

e)	e) Économie d'énergie et rétention de la chaleur (REB 6)	
Caracté	ristiques essentielles	Performances du produit

f) Utilisation durable des ressources naturelles (REB 7)	
Caractéristiques essentielles	Performances du produit

Les performances du produit identifié ci-dessus sont conformes aux performances déclarées. Conformément au règlement (UE) no 305/2011, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné ci-dessus.

Signé pour le fabricant et en son nom par:

Dr. Jens Weber

(Nom)

(Signature)

Bad Laasphe, 28.01.2025

(Lieu et date)

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ		EJOT
Αριθ.	4 - 021 - 160089 - 2024/01	EJUI
1.)	Μοναδικός κωδικός ταυτοποίησης του τύπου του προϊόντ Injection system EJOT Multifix Vinylester / Sormat ITH Viny	•
2.)	Προβλεπόμενη(-ες) χρήση(-εις): Μεταλλικά αγκύρια έγχυσης για χρήση σε τοιχοποιία	
3.)	Κατασκευαστής: EJOT SE & Co. KG, Market Unit Construction, In der Stocky	viese 35, 57334 Bad Laasphe - Germany
4.)	Σύστημα/συστήματα AVCP (αξιολόγηση και επαλήθευση σύστημα 1	της σταθερότητας της επίδοσης):
5.)		-0604 es Institut für Bautechnik, Berlin rechnische Universität Darmstadt
6.) a) Ουσιώδι	Δηλωθείσα(-ες) επίδοση(-εις): Μηχανική αντίσταση και σταθερότητα (BWR 1) και ασφάλεια και προσβασιμότητα (BWR 4) ιώδη χαρακτηριστικά	
Χαρακτη	ιριστική αντοχή για στατική και οιονεί στατική φόρτιση	Βλέπε παραρτήματα Β 5, Β 6, Γ 1 έως Γ 56
Χαρακτη φόρτιση	ιριστικές αντιστάσεις και μετατοπίσεις για σεισμικές	Δεν αξιολογούνται οι επιδόσεις

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ

Αριθ. 4 - 021 - 160089 - 2024/01

b) Ασφάλεια σε περίπτωση πυρκαγιάς (BWR 2)	
Ουσιώδη χαρακτηριστικά	Απόδοση
Αντίδραση στη φωτιά	Κατηγορία Α1
Αντοχή στη φωτιά υπό εφελκυσμό και διατμητική φόρτιση με και χωρίς μοχλοβραχίονα. Ελάχιστες αποστάσεις και αποστάσεις ακμών	Βλέπε παραρτήματα Γ2, Γ7, Γ8, Γ13, Γ14, Γ17, Γ18, Γ19, Γ20, Γ37, Γ38, Γ43, Γ44, Γ45, Γ46, Γ51 και Γ52.

c) Υγιεινή, υγεία και περιβάλλον (BWR 3)	
Ουσιώδη χαρακτηριστικά	Απόδοση
Περιεχόμενο, εκπομπή ή/και απελευθέρωση επικίνδυνων ουσιών	Δεν αξιολογούνται οι επιδόσεις

d) Προστασία από θόρυβο (BWR 5)	
Απόδοση	

e)	Εξοικονόμηση ενέργειας και συγκράτηση θερμότητας (BWR 6)	
Ουσιώδη χαρακτηριστικά		Απόδοση

f) Εξοικονόμηση ενέργειας και συγκράτηση θερμότητας (BWR 7)	
Ουσιώδη χαρακτηριστικά	Απόδοση

Η επίδοση του προϊόντος που ταυτοποιείται ανωτέρω είναι σύμφωνη με τη (τις) δηλωθείσα(-ες) επίδοση(-εις). Η δήλωση αυτή των επιδόσεων συντάσσεται, σύμφωνα με τον κανονισμό (ΕΕ) αριθ. 305/2011, με αποκλειστική ευθύνη του κατασκευαστή που ταυτοποιείται ανωτέρω.

Υπογραφή για λογαριασμό και εξ ονόματος του κατασκευαστή από:

Dr. Jens Weber

(όνομα)

(υπογραφή

Bad Laasphe, 28.01.2025

(τόπος και ημερομηνία έκδοσης)

IZJAN Br.	/A O SVOJSTVIMA 4 - 021 - 160089 - 2024/01		EJOT
DI.	4 - 021 - 100069 - 2024/01		
1.)	Jedinstvena identifikacijska oznaka vrste Injection system EJOT Multifix Vinylester /	•	lester for masonry (033)
2.)	Namjena/namjene: Sidra za brizganje metala za upotrebu u zidanju		
3.)	Proizvođač: EJOT SE & Co. KG, Market Unit Construct	ion, In der Stockw	viese 35, 57334 Bad Laasphe - Germany
4.)	Sustav/sustavi za ocjenu i provjeru stalnosti svojstava (AVCP): Sustav 1		/CP):
5.)	Europski dokument za ocjenjivanje: Europska tehnička ocjena: Tijelo za tehničko ocjenjivanje: Prijavljeno tijelo/prijavljena tijela:		-0604 es Institut für Bautechnik, Berlin echnische Universität Darmstadt
6.) a)	Objavljena svojstva: Mehanička otpornost i stabilnost (BWR 1) i sig	gurnost i pristupači	nost (BWR 4)
Bitne ka	rakteristike		Svojstva
Karakte	istična otpornost za statičko i kvazistatičko opte	erećenje	Vidjeti priloge B 5, B 6, C 1 do C 56
Karakteristični otpor i pomaci za seizmičke učitavanje			Nije procijenjena izvedba

IZJAVA O SVOJSTVIMA

Br. 4 - 021 - 160089 - 2024/01

b) Sigurnost u slučaju požara (BWR 2)	
Bitne karakteristike	Svojstva
Reakcija na vatru	Klasa A1
Otpornost na vatru pod zatezanjem i posmičnim opterećenjem s i bez poluge. Minimalni razmak između rubova i razmak	Vidjeti priloge C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44,

c) Higijena, zdravlje i okoliš (BWR 3)	
Bitne karakteristike	Svojstva
Sadržaj, emisija i/ili ispuštanje opasnih tvari	Nije procijenjena izvedba

d) Zaštita od buke (BWR 5)	
Svojstva	

e)	Ušteda energije i zadržavanje topline (BWR 6)	
Bitne karakteristike		Svojstva

f) Održivo korištenje prirodnih resursa (BWR 7)	
Bitne karakteristike	Svojstva

Prije utvrđeno svojstvo proizvoda u skladu je s objavljenim svojstvima. Ova izjava o svojstvima izdaje se, u skladu s Uredbom (EU) br. 305/2011, pod isključivom odgovornošću prethodno utvrđenog proizvođača.

Za proizvođača i u njegovo ime potpisao:

Dr. Jens Weber

(ime)

(potpis)

Bad Laasphe, 28.01.2025

(Mjesto i datum izdavanja)

TELJ	ESÍTMÉNYNYILATKOZAT		EJOT
Száma	: 4 - 021 - 160089 - 2024/01		
1.)	A terméktípus egyedi azonosító kódja: Injection system EJOT Multifix Vinylester /	Sormat ITH Vinyl	ester for masonry (033)
2.)	Felhasználás célja(i): Fém injektálási horgonyok falazatba való b	eépítéshez	
3.)	Gyártó: EJOT SE & Co. KG, Market Unit Construction	on, In der Stockw	viese 35, 57334 Bad Laasphe - Germany
4.)	Az AVCP-rendszer(ek): rendszer 1		
5.)	Az európai értékelési dokumentum: Európai műszaki értékelés: A műszaki értékelést végző szerv: Bejelentett szerv(ek):		-0604 es Institut für Bautechnik, Berlin echnische Universität Darmstadt
6.) a) Lényege) A nyilatkozatban szereplő teljesítmény(ek): Mechanikai ellenállás és stabilitás (BWR 1), biztonság és elérhetőség (BWR 4) myeges termékjellemzők Termék teljesítménye		
Jellemz	ő ellenállás statikus és kvázi-statikus terhelés es	setén	Lásd a B 5., B 6., C 1-C 56. mellékletet.
Jellemz terhelés	ő ellenállás és elmozdulások a szeizmikus		Nincs értékelt teljesítmény

TELJESÍTMÉNYNYILATKOZAT

Száma: 4 - 021 - 160089 - 2024/01

b) Biztonság tűz esetén (BWR 2)	
Lényeges termékjellemzők	Termék teljesítménye
Tűzre adott reakció	A1 osztály
Tűzállóság húzó- és nyíróterhelés alatt, és kar nélkül. Minimális éltávolságok és élközök	Lásd a C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 és C52 mellékletet.

c) Higiénia, egészség és környezet (BWR 3)	
Lényeges termékjellemzők	Termék teljesítménye
Veszélyes anyagok tartalma, kibocsátása és/vagy kibocsátása	Nincs értékelt teljesítmény

d) Zaj elleni védelem (BWR 5)	
Lényeges termékjellemzők	Termék teljesítménye

e) Energiatakarékosság és hővisszatartás (BWR 6)	
Lényeges termékjellemzők	Termék teljesítménye

f) A természeti erőforrások fenntartható használata (BWR 7)	
Lényeges termékjellemzők	Termék teljesítménye

A fent azonosított termék teljesítménye megfelel a bejelentett teljesítmény(ek)nek. A 305/2011/EU rendeletnek megfelelően e teljesítménynyilatkozat kiadásáért kizárólag a fent meghatározott gyártó a felelős.

A gyártó nevében és részéről aláíró személy:

Dr. Jens Weber

(név)

(aláírás

Bad Laasphe, 28.01.2025

(hely és kiállítás dátuma)

DICHIARAZIONE DI PRESTAZIONE N. 4 - 021 - 160089 - 2024/01		EJOT
1.)	Codice di identificazione unico del prodotto-tipo: Injection system EJOT Multifix Vinylester / Sormat ITH Viny	
2.)	Usi previsti: Ancoraggi ad iniezione in metallo per l'utilizzo in muratura	
3.)	Fabbricante: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany	
4.)	Sistemi di VVCP: Sistema 1	
5.)	•	-0604 es Institut für Bautechnik, Berlin rechnische Universität Darmstadt
6.) a) Caratter	Prestazioni dichiarate: Resistenza meccanica e stabilità (BWR 1) e sicurezza e accessibilità (BWR 4) ratteristiche essenziali Prestazione	
Resister	nza caratteristica per carichi statici e quasi statici	Cfr. gli allegati B 5, B 6, da C 1 a C 56.
Resister carico si	nza e spostamenti caratteristici per il carico sismico". smico	Nessuna prestazione valutata

DICHIARAZIONE DI PRESTAZIONE

N. 4 - 021 - 160089 - 2024/01

b) Sicurezza in caso di incendio (BWR 2)	
Caratteristiche essenziali	Prestazione
Reazione al fuoco	Classe A1
Resistenza al fuoco sotto carico di tensione e di taglio con e senza braccio di leva. Distanze minime tra i bordi e spaziatura	Cfr. allegati C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 e C52.

c) Igiene, salute e ambiente (BWR 3)	
Caratteristiche essenziali	Prestazione
Contenuto, emissione e/o rilascio di sostanze pericolose	Nessuna prestazione valutata

d) Protezione contro il rumore (BWR 5)	
Caratteristiche essenziali	Prestazione

e)	Economia energetica e ritenzione di calore (BWR 6)	
Caratter	istiche essenziali	Prestazione

f) Uso sostenibile delle risorse naturali (BWR 7)	
Caratteristiche essenziali	Prestazione

La prestazione del prodotto sopra identificato è conforme all'insieme delle prestazioni dichiarate. La presente dichiarazione di responsabilità viene emessa, in conformità al regolamento (UE) n. 305/2011, sotto la sola responsabilità del fabbricante sopra identificato.

Firmato a nome e per conto del fabbricante da:

Dr. Jens Weber

(nome)

(firma)

Bad Laasphe, 28.01.2025

(luogo e data del rilascio)

EKSP Nr.	PLOATACINIŲ SAVYBIŲ DEKLARACIJA 4 - 021 - 160089 - 2024/01	EJOT
1.)	Produkto tipo unikalus identifikavimo kodas: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)	
2.)	Naudojimo paskirtis (-ys): Metaliniai injekciniai inkarai, skirti naudoti mūre	
3.)	Gamintojas: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany	
4.)	 4.) Eksploatacinių savybių pastovumo vertinimo ir tikrinimo sistema (-os): Sistema 1 	
5.)	Europos techninis įvertinimas:ETA-16/0Techninio vertinimo įstaiga:DIBt - De	076-01-0604 089 utsches Institut für Bautechnik, Berlin SW - Technische Universität Darmstadt
6.) a) Esminės	Deklaruojama (-os) eksploatacinė (-ės) savybė (-ės): Mechaninis atsparumas ir stabilumas (BWR 1) ir saugumas bei prieinamumas (BWR 4) inės charakteristikos	
	eristinis atsparumas statinei ir kvazistatinei apkrovai eristinis atsparumas ir poslinkiai seisminiams poveikiams	Žr. B 5, B 6, C 1-C 56 priedus. Veiklos rezultatai neįvertinti Image: State of the state

EKSPLOATACINIŲ SAVYBIŲ DEKLARACIJA

Nr. 4 - 021 - 160089 - 2024/01

b) Sauga gaisro atveju (BWR 2)	
Esminės charakteristikos	Eksploatacinės savybės
Reakcija į ugnį	A1 klasė
Atsparumas ugniai veikiant tempimo ir šlyties apkrovai su ir be svirties rankenos. Mažiausi atstumai tarp kraštų ir atstumai tarp jų	Žr. priedus C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 ir C52.

c) Higiena, sveikata ir aplinka (BWR 3)	
Esminės charakteristikos	Eksploatacinės savybės
Pavojingų medžiagų kiekis, išmetimas ir (arba) išleidimas	Veiklos rezultatai neįvertinti

d) Apsauga nuo triukšmo (BWR 5)	
Esminės charakteristikos	Eksploatacinės savybės

e) Energijos taupymas ir šilumos išsaugojimas (BWR 6)	
Esminės charakteristikos	Eksploatacinės savybės

f) Tvarus gamtos išteklių naudojimas (BWR 7)	Tvarus gamtos išteklių naudojimas (BWR 7)	
Esminės charakteristikos Eksploatacinės savybės		

Nurodyto produkto eksploatacinės savybės atitinka visas deklaruotas eksploatacines savybes. Ši eksploatacinių savybių deklaracija pateikiama vadovaujantis Reglamentu (ES) Nr. 305/2011, atsakomybė už jos turinį tenka tik joje nurodytam gamintojui.

Pasirašyta (gamintojo ir jo vardu):

Dr. Jens Weber

(vardas)

(parašas)

Bad Laasphe, 28.01.2025

(išdavimo vieta ir data)

EKSP	EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA Nr. 4 - 021 - 160089 - 2024/01		
Nr.	4 - 021 - 160089 - 2024/01		EJUI
1.)	Unikālais izstrādājuma tipa identifikācijas numurs: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)		
2.)	Paredzētais izmantojums: Metāla injekcijas enkuri izmantošanai mūrī		
3.)	Ražotājs: EJOT SE & Co. KG, Market Unit Construction	on, In der Stockw	wiese 35, 57334 Bad Laasphe - Germany
4.)	Ekspluatācijas īpašību noturības novērtēju Sistēma 1	uma un pārbaud	des (AVCP) sistēma(-as):
5.)	Eiropas novērtējuma dokuments: Eiropas tehniskais novērtējums: Tehniskā novērtējuma iestāde: Paziņotā(-ās) iestāde(-es):		I-0604 es Institut für Bautechnik, Berlin Fechnische Universität Darmstadt
6.) a)	a) Mehāniskā izturība un stabilitāte (BWR 1) un drošība un pieejamība (BWR 4)		
	raksturlielumi gā pretestība statiskai un kvazi-statiskai slodzei	i	Ekspluatācijas īpašības Skatīt B 5, B 6, C 1 līdz C 56 pielikumu.
Raksturī slodzei	gā pretestība un pārvietojumi seismiskajai iedar	'bībai	Veiktspēja nav novērtēta
L			1

EKSPLUATĀCIJAS ĪPAŠĪBU DEKLARĀCIJA

Nr. 4 - 021 - 160089 - 2024/01

b) Drošība ugunsgrēka gadījumā (BWR 2)		
Būtiskie raksturlielumi	Ekspluatācijas īpašības	
Reakcija uz ugunsgrēku	A1 klase	
Ugunsizturība pie stiepes un bīdes slodzes ar un bez sviras rokas. Minimālie attālumi starp malām un attālumi	Skatīt C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 un C52 pielikumu.	

c) Higiēna, veselība un vide (BWR 3)	
Būtiskie raksturlielumi	Ekspluatācijas īpašības
Bīstamu vielu saturs, emisija un/vai izdalīšanās	Veiktspēja nav novērtēta

d) Aizsardzība pret troksni (BWR 5)	
Būtiskie raksturlielumi	Ekspluatācijas īpašības

e) Enerģijas ekonomija un siltuma saglabāšana (BWR 6)	
Būtiskie raksturlielumi	Ekspluatācijas īpašības

f) Dabas resursu ilgtspējīga izmantošana (BWR 7)	Dabas resursu ilgtspējīga izmantošana (BWR 7)	
Būtiskie raksturlielumi	Ekspluatācijas īpašības	

Iepriekš norādītā izstrādājuma ekspluatācijas īpašības atbilst deklarēto ekspluatācijas īpašību kopumam. Šī ekspluatācijas īpašību deklarācija izdota saskaņā ar Regulu (ES) Nr. 305/2011, un par to ir atbildīgs vienīgi iepriekš norādītais ražotājs.

Parakstīts ražotāja vārdā:

Dr. Jens Weber

(Vārds)

(Paraksts

Bad Laasphe, 28.01.2025

(Izsniegšanas vieta un datums)

DIKJARAZZJONI TA' PRESTAZZJONI Nru. 4 - 021 - 160089 - 2024/01		EJOT	
1.)	Kodiċi uniku ta' identifikazzjoni tat-tip tal-p Injection system EJOT Multifix Vinylester /		lester for masonry (033)
2.)	Użu/i intenzjonat/i: Ankri tal-injezzjoni tal-metall għall-użu fil-ģe	ebel	
3.)	Manifattur: EJOT SE & Co. KG, Market Unit Construction	on, In der Stockw	viese 35, 57334 Bad Laasphe - Germany
4.)	Sistema/i ta' AVCP: Sistema 1		
5.)	Dokument Ewropew ta' Valutazzjoni: Valutazzjoni Teknika Ewropea: Korp tal-Valutazzjoni Teknika: Korp/i nnotifikat/i:		-0604 es Institut für Bautechnik, Berlin echnische Universität Darmstadt
6.) a)	Prestazzjoni/jiet ddikjarata/i: Mehāniskā pretestība un stabilitāte (BPP 1) un	n drošība un pieeja	amība (BPP 4)
-	stići essenzjali		Prestazzjoni
Reżisten	za karatteristika għat-tagħbija statika u kważi st	atika	Ara I-Annessi B 5, B 6, C 1 sa C 56
Reżistenza karatteristika u spostamenti għal sismiċi Tagħbija		L-ebda prestazzjoni ma ģiet ivvalutata	

DIKJARAZZJONI TA' PRESTAZZJONI

Nru. 4 - 021 - 160089 - 2024/01

b) Sigurtà fil-każ ta 'nar (BWR 2)	
Karatteristici essenzjali	Prestazzjoni
Reazzjoni għan-nar	Klassi A1
Ir-reżistenza għan-nar taħt tensjoni u t-tagħbija tal-shear bi u mingħajr driegħ tal-lieva. Distanzi minimi tat-tarf u spazjar	Ara I-Annessi C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44,

c) lġjene, saħħa u ambjent (BWR 3)	
Karatteristici essenzjali	Prestazzjoni
Kontenut, emissjoni u/jew rilaxx ta' sustanzi perikolużi	L-ebda prestazzjoni ma ģiet ivvalutata

d) Protezzjoni kontra I-istorbju (BWR 5)	
Karatteristici essenzjali	Prestazzjoni

e)	Ekonomija tal-enerģija u żamma tas-sħana (BWR 6)	
Karatteristiċi essenzjali		Prestazzjoni

f) Użu sostenibbli tar-riżorsi naturali (BWR 7)	
Karatteristići essenzjali Prestazzjoni	

II-prestazzjoni tal-prodott identifikat hawn fuq hija konformi mal-prestazzjonijiet iddikjarati. Din id-dikjarazzjoni ta' prestazzjoni hija maħruġa, skont ir-Regolament (UE) Nru 305/2011, taħt ir-responsabbiltà unika tal-manifattur identifikat hawn fuq.

Iffirmat għal u f'isem il-manifattur minn:

Dr. Jens Weber

(isem)

(firma)

Bad Laasphe, 28.01.2025

(post u data tal-ħruġ)

PRESTATIEVERKLARING				
Nr.	4 - 021 - 160089 - 2024/01			EJOT
1.)	Unieke identificatiecode van het producttype: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)			
2.)	Beoogd(e) gebruik(en): Metalen injectieankers voor gebruik in metselwerk			
3.)	Fabrikant: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany			
4.)	Het systeem of de systemen voor de beoordeling en verificatie van de prestatiebestendigheid: Systeem 1			
5.)	Europees beoordelingsdocument: Europese technische beoordeling: Technische beoordelingsinstantie: Aangemelde instantie(s):		-0604 es Institut für Baut echnische Univers	
6.) a) Essentië	Aangegeven prestatie(s): Mehāniskā izturība un stabilitāte (BWR 1) un drošība un pieejamība (BWR 4) ntiële kenmerken			
Karaktei	ristieke weerstand voor statische en quasi-statis	che belasting	Zie bijlagen B 5, B	6, C 1 tot en met C 56.
Karakteristieke weerstand en verplaatsingen voor seismische belasting		Geen prestatie beo	oordeeld	

PRESTATIEVERKLARING

Nr. 4 - 021 - 160089 - 2024/01

b) Veiligheid in geval van brand (BWR 2)	
Essentiële kenmerken	Prestaties
Reactie op vuur	Klasse A1
Weerstand tegen brand onder trek- en schuifbelasting met en zonder hefboomarm. Minimumafstanden en afstanden tussen randen	Zie bijlagen C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 en C52.

c) Hygiëne, gezondheid en het milieu (BWR 3)	
Essentiële kenmerken	Prestaties
Inhoud, emissie en/of vrijkomen van gevaarlijke stoffen	Geen prestatie beoordeeld

I) Bescherming tegen lawaai (BWR 5)	
Prestaties	

e)	Energiebesparing en warmtebehoud (BWR 6)	
Essentiële kenmerken		Prestaties

f) Duurzaam gebruik van natuurlijke hulpbronnen (BWR 7)	Duurzaam gebruik van natuurlijke hulpbronnen (BWR 7)	
Essentiële kenmerken	Prestaties	

De prestaties van het hierboven omschreven product zijn conform de aangegeven prestaties. Deze prestatieverklaring wordt in overeenstemming met Verordening (EU) nr. 305/2011 onder de exclusieve verantwoordelijkheid van de hierboven vermelde fabrikant verstrekt.

Ondertekend voor en namens de fabrikant door:

Dr. Jens Weber

(naam)

handtekening)

Bad Laasphe, 28.01.2025

(plaats en datum van afgifte)

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH Nr 4 - 021 - 160089 - 2024/01		EJOT
1.)	Niepowtarzalny kod identyfikacyjny typu wyrobu: Injection system EJOT Multifix Vinylester / Sormat ITH Viny	lester for masonry (033)
2.)	Zamierzone zastosowanie lub zastosowania: Metalowe kotwy iniekcyjne do stosowania w murze	
3.)	Producent: EJOT SE & Co. KG, Market Unit Construction, In der Stocky	viese 35, 57334 Bad Laasphe - Germany
4.)	System(-y) oceny i weryfikacji stałości właściwości użytkowych: system 1	
5.)		-0604 es Institut für Bautechnik, Berlin rechnische Universität Darmstadt
6.) a) Zasadnie	Deklarowane właściwości użytkowe: Nośność i stateczność (BWR 1) oraz bezpieczeństwo użytkowania (BWR 4) adnicze charakterystyki Właściwości użytkowe	
Charakterystyczna odporność na obciążenia statyczne i quasi-statyczne		Patrz załączniki B 5, B 6, C 1 do C 56
Charakte	erystyczny opór i przemieszczenia dla obciążenia sejsmicznego	Nie oceniono wydajności

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH

Nr 4 - 021 - 160089 - 2024/01

b) Bezpieczeństwo pożarowe (BWR 2)	
Zasadnicze charakterystyki	Właściwości użytkowe
Reakcja na ogień	Klasa A1
Odporność na ogień pod obciążeniem rozciągającym i ścinającym z i bez ramienia dźwigni. Minimalne odległości i odstępy między krawędziami	Zob. załączniki C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 i C52.

c) Higiena, zdrowie i środowisko (BWR 3)	
Zasadnicze charakterystyki	Właściwości użytkowe
Zawartość, emisja i/lub uwalnianie substancji niebezpiecznych	Nie oceniono wydajności

Ochrona przed hałasem (BWR 5)	
Zasadnicze charakterystyki	Właściwości użytkowe

e) Oszczędność energii i zatrzymywanie ciepła (BWR 6)	
Zasadnicze charakterystyki	Właściwości użytkowe

 Zrównoważone wykorzystanie zasobów naturalnych (BWR 7) 	
Zasadnicze charakterystyki	Właściwości użytkowe

Właściwości użytkowe określonego powyżej wyrobu są zgodne z zestawem deklarowanych właściwości użytkowych. Niniejsza deklaracja właściwości użytkowych wydana zostaje zgodnie z Rozporządzeniem (UE) nr 305/2011 na wyłączną odpowiedzialność producenta określonego powyżej.

W imieniu producenta podpisał(-a):

dr Jens Weber

(nazwisko)

(podpis

Bad Laasphe, 28.01.2025

(miejsce i data wydania)

DECL	DECLARAÇÃO DE DESEMPENHO N.o 4 - 021 - 160089 - 2024/01			
N.o	4 - 021 - 160089 - 2024/01	EJUI		
1.)	Código de identificação único do produto-tipo: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)			
2.)	Utilização(ões) prevista(s) Âncoras de injeção de metal para utilização em alvenaria			
3.)	Fabricante: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany			
4.)	Sistema(s) de avaliação e verificação da regularida Sistema 1	de do desempenho (AVCP):		
5.)	Avaliação Técnica EuropeiaETA-16/0Organismo de Avaliação Técnica:DIBt - De	076-01-0604 089 utsches Institut für Bautechnik, Berlin SW - Technische Universität Darmstadt		
6.) a)	Desempenho(s) declarado(s): Resistência mecânica e estabilidade (BWR 1) e segurança e acessibilidade (BWR 4)			
		Desempenho		
	ncia caraterística para cargas estáticas e quase-estáticas ncia e deslocamentos caraterísticos para cargas sísmicas	Ver anexos B 5, B 6, C 1 a C 56 Nenhum desempenho avaliado		
L				

DECLARAÇÃO DE DESEMPENHO

N.o 4 - 021 - 160089 - 2024/01

b) Segurança em caso de incêndio (BWR 2)	
Características essenciais	Desempenho
Reacção ao fogo	Classe A1
Resistência ao fogo sob tensão e carga de cisalhamento com e sem braço de alavanca. Distâncias e espaçamentos mínimos entre bordos	Ver anexos C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 e C52

c) Higiene, saúde e meio ambiente (BWR 3)	
Características essenciais	Desempenho
Conteúdo, emissão e/ou libertação de substâncias perigosas	Nenhum desempenho avaliado

) Protecção contra o ruído (BWR 5)	
Características essenciais	Desempenho

e)	Economia de energia e retenção de calor (BWR 6)	
Caracte	rísticas essenciais	Desempenho

f) Utilização sustentável dos recursos naturais (BWR 7)	Utilização sustentável dos recursos naturais (BWR 7)	
Características essenciais	Desempenho	

O desempenho do produto identificado acima está em conformidade com o conjunto de desempenhos declarados. A presente declaração de desempenho é emitida, em conformidade com o Regulamento (UE) n.o 305/2011, sob a exclusiva responsabilidade do fabricante identificado acima.

Assinado por e em nome do fabricante por:

Dr. Jens Weber

(nome)

(assinatura

Bad Laasphe, 28.01.2025

(local e data de emissão)

DECL	DECLARAȚIA DE PERFORMANȚĂ			
Nr,	4 - 021 - 160089 - 2024/01		EJOT®	
1.)	Cod unic de identificare al produsului-tip: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)			
2.)	Utilizare (utilizări) preconizată (preconizate): Ancore de injecție metalice pentru utilizare în zidărie			
3.)	Fabricant: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany			
4.)	Sistemul (sistemele) de evaluare și de verificare a constanței performanței: Sistemul 1			
5.)	Documentul de evaluare european: Evaluarea tehnică europeană: Organismul de evaluare tehnică: Organism (organisme) notificat(e):	EAD 330076-01-0604 ETA-16/0089 DIBt - Deutsches Institut für Bautechnik, Berlin 2873 - IFSW - Technische Universität Darmstadt		
6.) a)	Performanța (performanțe) declarată (declarate): Rezistența mecanică și stabilitatea (BWR 1) și siguranța și accesibilitatea (BWR 4)			
	ristici esențiale nța caracteristică pentru sarcini statice și cvasi-s	tatice	Performanța produsului A se vedea anexele B 5, B 6, C 1 până la C 56	
	nța și deplasările caracteristice pentru încărcarea		Nicio performanță evaluată	

DECLARAȚIA DE PERFORMANȚĂ

b) Siguranța în caz de incendiu (BWR 2)	
Caracteristici esențiale	Performanța produsului
Reacția la foc	Clasa A1
Rezistența la foc sub sarcină de tracțiune și forfecare cu și fără braț de pârghie. Distanțe minime între muchii și spații	A se vedea anexele C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 și C52

c) Igiena, sănătatea și mediul (BWR 3)	
Caracteristici esențiale	Performanța produsului
Conținutul, emisia și/sau eliberarea de substanțe periculoase	Nicio performanță evaluată

d) Protecție împotriva zgomotului (BWR 5)	
Caracteristici esențiale	Performanța produsului

e) Economie de energie și păstrarea căldurii (BWR 6)	
Caracteristici esențiale	Performanța produsului

f) Utilizarea	Utilizarea durabilă a resurselor naturale (BWR 7)	
Caracteristici esențiale		Performanța produsului

Performanța produsului identificat mai sus este în conformitate cu setul de performanțe declarate. Această declarație de performanță este eliberată în conformitate cu Regulamentul (UE) nr. 305/2011, pe răspunderea exclusivă a fabricantului identificat mai sus.

Semnată pentru și în numele fabricantului de către:

Dr. Jens Weber

(numele)

(semnătură

Bad Laasphe, 28.01.2025

(locul și data emiterii)

PRES	PRESTANDADEKLARATION Nr 4 - 021 - 160089 - 2024/01		
Nr	4 - 021 - 160089 - 2024/01		
1.)	Produkttypens unika identifikationskod: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)		
2.)	Avsedd användning/avsedda användningar: Injektionsankare av metall för användning i murverk		
3.)	Tillverkare: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany		
4.)	System för bedömning och fortlöpande kontroll av presta Systen 1	nda:	
5.)		I-0604 es Institut für Bautechnik, Berlin Fechnische Universität Darmstadt	
6.) a) Väsentlig	Angiven prestanda: Mekanisk motstånd och stabilitet (BWR 1) och säkerhet och tillgänglighet (BWR 4) sentliga egenskaper		
Karakter	istiskt motstånd för statiska och kvasistatiska belastningar	Se bilagorna B 5, B 6, C 1 till C 56.	
Karakter belastnir	istiska motstånd och förskjutningar för seismisk	Ingen prestationsbedömning	
L		·]	

PRESTANDADEKLARATION

4 - 021 - 160089 - 2024/01 Nr

b) Säkerh) Säkerhet vid brand (BWR 2)	
Väsentliga egens	skaper	Prestanda
Reaktion på bran	d	Klass A1
Motstånd mot brand under drag- och skjuvbelastning med och utan hävstångsarm. Minsta kantavstånd och inbördes avstånd		Se bilagorna C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 och C52.

c)	Hygien, hälsa och miljö (BWR 3)	
Väsentliga egenskaper		Prestanda
Inr	nehåll, utsläpp och/eller avgivning av farliga ämnen	Ingen prestationsbedömning

d) Skydd mot buller (BWR 5)	
Väsentliga egenskaper	Prestanda

e) Energihushållning och värmehållning (BWR 6)	
Väsentliga egenskaper	Prestanda

Hållbar användning av naturresurser (BWR 7)	
Väsentliga egenskaper	Prestanda

Prestandan för ovanstående produkt överensstämmer med den angivna prestandan. Denna prestandadeklaration har utfärdats i enlighet med förordning (EU) nr 305/2011 på eget ansvar av den tillverkare som anges ovan.

Undertecknad på tillverkarens vägnar av:

Dr. Jens Weber

(namn)

(signatur)

Bad Laasphe, 28.01.2025

(lplats and datum)

VYHL	ÁSENIE O PARAMETROCH	EJOT
č.	4 - 021 - 160089 - 2024/01	EJUI
1.)	Jedinečný identifikačný kód typu výrobku: Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry (033)	
2.)	Zamýšľané použitie/použitia: Kovové injektážne kotvy na použitie v murive	
3.)	Výrobca: EJOT SE & Co. KG, Market Unit Construction, In der Stockwiese 35, 57334 Bad Laasphe - Germany	
4.)	Systém(-y) posudzovania a overovania nemennosti p Systém 1	parametrov:
5.)	Európske technické posúdenie:ETA-16/00Orgán technického posudzovania:DIBt - Deu	76-01-0604 89 Itsches Institut für Bautechnik, Berlin W - Technische Universität Darmstadt
6.) a)	Deklarované parametre: Mechanická odolnosť a stabilita (BWR 1) a bezpečnosť a dostupnosť (BWR 4)	
	é charakteristiky eristická odolnosť pri statickom a kvázi statickom zaťažení	vlastnosti výrobku Pozri prílohy B 5, B 6, C 1 až C 56
	eristická odolnosť a posuny pre seizmické	Nehodnotí sa žiadna výkonnosť

VYHLÁSENIE O PARAMETROCH

č. 4 - 021 - 160089 - 2024/01

b) Bezpečnosť v prípade požiaru (BWR 2)	
základné charakteristiky	vlastnosti výrobku
Reakcia na požiar	Trieda A1
Požiarna odolnosť pri zaťažení ťahom a šmykom s a bez pákového ramena. Minimálne vzdialenosti a rozstupy hrán	Pozri prílohy C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 a C52.

c) Hygiena, zdravie a životné prostredie (BWR 3)	Hygiena, zdravie a životné prostredie (BWR 3)					
základné charakteristiky	vlastnosti výrobku					
Obsah, emisie a/alebo uvoľňovanie nebezpečných látok	Nehodnotí sa žiadna výkonnosť					

d)	Ochrana proti hluku (BWR 5)	
základné	charakteristiky	vlastnosti výrobku

ýrobku

f) Udržateľné využívanie prírodných zdrojov (BWR 7)	Udržateľné využívanie prírodných zdrojov (BWR 7)				
základné charakteristiky	vlastnosti výrobku				

Uvedené parametre výrobku sú v zhode so súborom deklarovaných parametrov. Toto vyhlásenie o parametroch sa v súlade s nariadením (EÚ) č. 305/2011 vydáva na výhradnú zodpovednosť uvedeného výrobcu.

Podpísal(-a) za a v mene výrobcu:

Dr. Jens Weber

(meno)

(podpis

Bad Laasphe, 28.01.2025

(miesto a dátum na výstava)

IZJA\	A O LASTNOSTIH		EJOT		
Št.	4 - 021 - 160089 - 2024/01		EJUI		
1.)	Enotna identifikacijska oznaka tipa proizvod Injection system EJOT Multifix Vinylester / So		ester for masonry (033)		
2.)	Predvidena uporaba: Kovinska injekcijska sidra za uporabo v zidov	vih			
3.)	Proizvajalec: EJOT SE & Co. KG, Market Unit Construction	ı, In der Stockw	iese 35, 57334 Bad Laasphe - Germany		
4.)	Sistemi ocenjevanja in preverjanja nesprem Sistem 1	nenljivosti lastn	osti:		
5.)	Evropska tehnična ocena: Organ za tehnično ocenjevanje:	čna ocena:ETA-16/0089čno ocenjevanje:DIBt - Deutsches Institut für Bautechnik, Berlin			
6.) a)	Navedene lastnosti: Mehanska odpornost in stabilnost (BWR 1) ter v značilnosti				
	ristična odpornost pri statičnih in kvazistatičnih obr		Zmogljivost proizvoda Glej priloge B 5, B 6, C 1 do C 56		
	a odpornost in premiki za seizmične		Uspešnost ni bila ocenjena		

IZJAVA O LASTNOSTIH

Št. 4 - 021 - 160089 - 2024/01

b) Varnost v primeru požara (BWR 2)					
Glavne značilnosti	Zmogljivost proizvoda				
Odziv na ogenj	Razred A1				
Odpornost proti požaru pri natezni in strižni obremenitvi z in brez ročice. Najmanjše razdalje in razmiki med robovi	Glej priloge C2, C7, C8, C13, C14, C17, C18, C19, C20, C37, C38, C43, C44, C45, C46, C51 in C52.				

c) Higiena, zdravje in okolje (BWR 3) \ t	
Glavne značilnosti	Zmogljivost proizvoda
Vsebnost, emisije in/ali sproščanje nevarnih snovi	Uspešnost ni bila ocenjena

d) Zaščita pred hrupom (BWR 5) \ t	
Glavne značilnosti	Zmogljivost proizvoda

e)) Varčevanje z energijo in ohranjanje toplote (BWR 6) \ t						
Glavne značilnosti		Zmogljivost proizvoda					

Trajnostna raba naravnih virov (BWR 7) \ t					
Glavne značilnosti	Zmogljivost proizvoda				

Lastnosti proizvoda, navedenega zgoraj, so v skladu z navedenimi lastnostmi. Za izdajo te izjave o lastnostih je v skladu z Uredbo (EU) št. 305/2011 odgovoren izključno proizvajalec, naveden zgoraj.

Podpisal za in v imenu proizvajalca:

Dr. Jens Weber

(Ime)

(Podpis

Bad Laasphe, 28.01.2025

(Kraj in datum izstavitve)

Table B2: Installation parameters in autoaerted AAC and solid masonry (without sleeve) for prepositioned or push through installation											
Anchor size				M8	M10	IG-M6	M12	IG-M8	M16	IG-M10	
Nominal drill hole	Iominal drill hole diameter d ₀ [mm]		10	12 14		18					
Drill hole depth		h ₀	[mm]	$h_{ef} + t_{fix}^{(1)}$							
Effective anchor	age depth	h _{ef}	[mm]	80 ≥90 ≥100 ≥100			≥ 90 ≥ 100		100		
Diameter of	Prepositioned installation	d _f ≤	[mm]	9	12	7	14	9	18	12	
clearance hole in the fixture	Push through installation	d _f ≤	[mm]	12	14	14	16	16	20	20	
Maximum install	ation torque	T _{inst}	[Nm]			See An	nexes C	4 – C 56			
Minimum thicknes	ss of member	h _{min}	[mm]	h _{ef} + 30			h _{ef} + 30				
Minimum spacing	l	s _{min}	[mm]	nm] See Annexes C 4 – C 56							
Minimum edge di	stance	c _{min}	[mm]								

¹⁾ Consider t_{fix} in case of push through installation.

Table B3:Installation parameters in solid and hollow brick (with perforated sleeve)
for prepositioned installation

Anchor size			M8		M8 / M10 IG-M6	1	M12 / M16 / IG-M8 / IG-M10			
Perfe	eve SH	12x80	16x85	16x130	16x130/330	20x85	20x130	20x200		
Nominal drill hole diameter	d ₀	[mm]	12	16	16	16	20	20	20	
Drill hole depth	h ₀	[mm]	85	90	135	330	90	135	205	
Effective anchorage depth	h _{ef}	[mm]	80	85	130	130	85	130	200	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9		7 (IG-M6) M8) / 12 (N			18) / 12 (10 v12) / 18		
Maximum installation torque	T _{inst}	[Nm]		· · ·	See Ar	nexes C	· · ·			
Minimum thickness of member	h _{min}	[mm]	115	115	195	195	115	195	240	
Minimum spacing	s _{min}	[mm]			Coo Am		4 0 50			
Minimum edge distance	c _{min}	[mm]		See Annexes C 4 – C 56						

Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry	
Intended use Installation parameters	Annex B 5

Table B4:Installation parameters in solid and hollow bricks (with perforated sleeve)
for prepositioned installation through non-load-bearing layers and/or push-
through installation

Anchor size				M8 / I IG-	M10 / M6	M12 / IG-M8 /			
	F	Perforated sle	eve SH	16x130	16x130/330	20×130	20x200		
Nominal drill hol	e diameter	d ₀	[mm]	16	16	20	20		
Drill hole depth		h ₀	[mm]		h _{ef} + 5mm	$1 + t_{nll} + t_{fix}^{1)}$			
Effective embedment	Prepositioned installation	h _{ef}	[mm]	130	130	130	200		
depth	Push through installation	h _{ef}	[mm]	85	130	85	85		
Maximum thickn loadbearing laye	r	max t _{nll}	[mm]	45	200	45	115		
Diameter of clearance hole	Prepositioned installation	d _f ≤	[mm]	7 (IG- 9 (M8) / 1		9 (IG-M8) / 1 14 (M12) /	2 (IG-M10) / / 18 (M16)		
in the fixture	Push through installation	d _f ≤	[mm]	1		2	2		
Maximum install		T _{inst}	[Nm]			es C 4 – C 56			
Minimum thickne		h _{min}	[mm]	195 (115)	195	195 (115)	240 (115)		
Minimum spacin Minimum edge d	-	S _{min} C _{min}	[mm] [mm]	See Annexes C 4 – C 56					

					Anchor	age				β-Fa	ctor				
Base material	anchor	size	Perforate		depti		Ta	: 40°C /	24°C	T₀: 80°C	C / 50°C	T₀: 120°	°C / 72°C		
			sleeve S		h _{ef}		c	d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w		
Autoclaved aerated concrete	all siz	es	with and without S		all		0	,95	0,86	0,81	0,73	0,81	0,73		
	d₀ ≤ 14	mm	with SH		all		0	,93	0,80	0,87	0,74	0,65	0,56		
	d₀ ≥ 16	mm	with SH		all		0	,93	0,93	0,87	0,87	0,65	0,65		
Calcium silica bricks	d₀ ≤ 14	mm	without S		≤ 100 n	am	0	,93	0,80	0,87	0,74	0,65	0,56		
Shore	d₀ ≥ 16	mm	without 3		2 100 1		0	,93	0,93	0,87	0,87	0,65	0,65		
	all siz	es	without S	н			> 100 mm		0	,93	0,56	0,87	0,52	0,65	0,40
			with SH		all		0	,86	0,86	0,86	0,86	0,73	0,73		
Clay Bricks	all siz	es	without S	н	H ≤ 100 m		0	,93	0,80	0,87	0,74	0,65	0,56		
			without SH		> 100 n	nm	0	,86	0,43	0,86	0,43	0,73	0,37		
Concrete brieke	d₀ ≤ 12	mm	with and				0	,93	0,80	0,87	0,74	0,65	0,56		
Concrete bricks	d₀ ≥ 16	16 mm without SH		H	all		0	,93	0,93	0,87	0,87	0,65	0,65		
Table C2: C	haracte	ristic	steel resi	stand	ce										
Anchor size						M	3	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Cross section area				A _s	[mm ²]	36,	6	58	84,3	157	-	-	-		
Characteristic ten	sion resis	stance	, Steel failu	re ¹⁾						_					
Steel, Property class			nd 4.8	N _{Rk,}	s [kN]	15 (1	3)	23 (21)	34	63	_3)	_3)	_3)		
		5.6 a	nd 5.8 N _R			18 (1	7)	29 (27)	42	78	10	17	29		
			N _R			29 (2	27)	46 (43)	67	125	16	27	46		
Stainless steel A2,	A4 and	50		N _{Rk,}		18		29	42	79	_3)	_3)	_3)		
HCR, class		70		N _{Rk,}		26	;	41	59	110	14	26	41		
(A2 only class 50 a		80		N _{Rk,}		29		46	67	126	_3)	_3)	_3)		
Characteristic ten	sion resis	stance	, Partial fac	tor ²⁾											
Stool Broparty alac		4.6 a	nd 5.6	γ _{Ms,} r	v [-]			2	,0			_3)			
Steel, Property clas	55	4.8, 5	.8 and 8.8	γ _{Ms,} r	v [-]					1,5					
Stainless steel A2.	A4 and	50		γ _{Ms,} r	v [-]			2,	86			_3)			
HCR, class		70		γ _{Ms,} r	v [-]					1,87					
(A2 only class 50 a	nd 70)	80		γ _{Ms,I}				1	,6			_3)			
Characteristic she	ar resista	ance, S	Steel failure	with	out lever	arm ¹)				-				
			nd 4.8	V ⁰ Rk	.s [kN]	7 (6		12 (10)	17	31	_3)	_3)	_3)		
Steel, Property clas	s	5.6 a	nd 5.8	V ⁰ Rk	.s [kN]	9 (8	-	15 (13)		39	5	9	15		
		8.8		V ⁰ Rk	_s [[kN]	15 (1	·	23 (21)		63	8	14	23		
Stainless steel A2,	A4 and	50		V ⁰ Rk	_s [[kN]	9		15	21	39	_3)	_3)	_3)		
HCR, class		70		V ⁰ Rk	_{us} [[kN]	13		20	30	55	7	13	20		
(A2 only class 50 a	nd 70)	80		V ⁰ Rk	,s [kN]	15	,	23	34	63	_3)	_3)	_3)		
Injection system masonry	n EJOT M	lultifix	Vinylester			Vinyl	est	er for							
Performances β-factors for job s	site testin	a unde	r tension la	ad							Anne	x C 1			

Anchor size				M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Cross section area		A _s	[mm ²]	36,6	58	84,3	157	-	-	-
Characteristic shear resist	,			1)						
	4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	_3)	_3)	_3)
Steel, Property class	5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	8	19	37
	8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	12	30	60
Stainless steel A2, A4 and	50	M ⁰ Rk,s	[Nm]	19	37	66	167	_3)	_3)	_3)
HCR, class	70	M ⁰ Rk,s	[Nm]	26	52	92	232	11	26	52
(A2 only class 50 and 70)	80	M ⁰ Rk,s		30	59	105	266	_3)	_3)	_3)
Characteristic shear resist	ance, Partial facto	r ²⁾								
Steel, Property class	4.6 and 5.6	γMs,V	[-]		1,6	57			_3)	
Steel, Flopenty class	4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,25			
Stainless steel A2, A4 and	50	γ _{Ms,V}	[-]		2,3	8			_3)	
HCR, class	70	γ _{Ms,V}	[-]				1,56			
(A2 only class 50 and 70)	80	γ _{Ms,V}	[-]	1,33				_3)		

 Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

2) in absence of national regulation

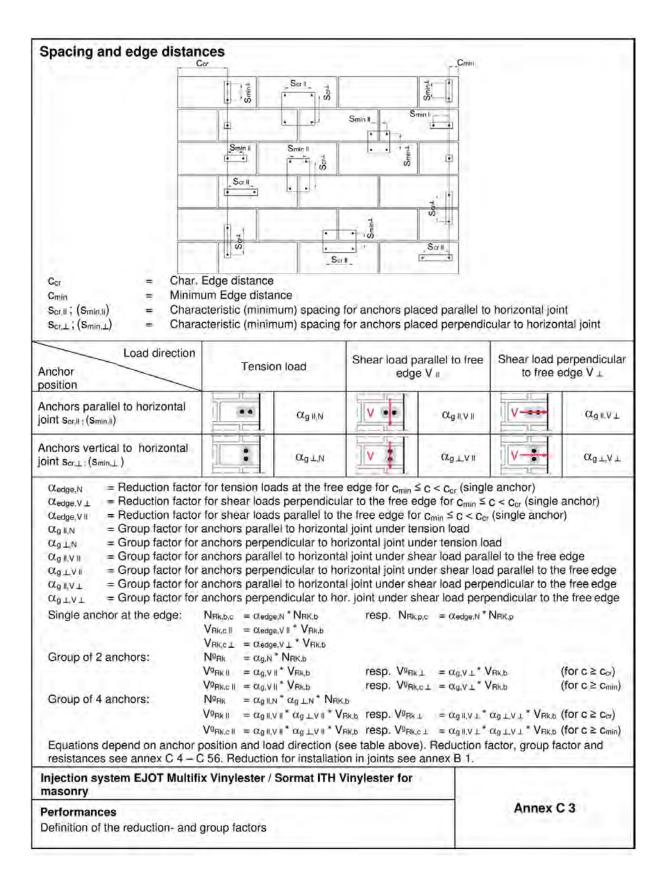

3) Fastener type not part of the ETA

Table C3: Characteristic steel resistance under fire exposure ¹)

Anchor size				M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Characteristic tension resistance, S	steel failure	e								
	R30	N _{Rk,s,fi}	[kN]	1,1	1,7	3,0	5,7	0,3	1,1	1,7
Steel, Property class 5.8, and higher; Stainless steel A2, A4 and HCR, lass 50 and higher	R60	N _{Rk,s,fi}	[kN]	0,9	1,4	2,3	4,2	0,2	0,9	1,4
	R90	N _{Rk,s,fi}	[kN]	0,7	1,0	1,6	3,0	0,2	0,7	1,0
J	R120	N _{Rk,s,fi}	[kN]	0,5	0,8	1,2	2,2	0,1	0,5	0,8
Characteristic shear resistance, Ste	el failure v	without	lever a	arm						
	R30	V _{Rk,s,fi}	[kN]	1,1	1,7	3,0	5,7	0,3	1,1	1,7
Steel, Property class 5.8, and higher; Stainless steel A2, A4 and HCR,	R60	V _{Rk,s,fi}	[kN]	0,9	1,4	2,3	4,2	0,2	0,9	1,4
class 50 and higher		V _{Rk,s,fi}		0,7	1,0	1,6	3,0	0,2	0,7	1,0
5	R120	V _{Rk,s,fi}	[kN]	0,5	0,8	1,2	2,2	0,1	0,5	0,8
Characteristic shear resistance, Ste	el failure v	with lev	er arm	1						
	R30	M _{Rk,s,fi}	[Nm]	1,1	2,2	4,7	12,0	0,2	1,1	2,2
Steel, Property class 5.8, and higher; Stainless steel A2, A4 and HCR,	R60	M _{Rk,s,fi}	[Nm]	0,9	1,8	3,5	9,0	0,2	0,9	1,8
class 50 and higher	R90	M _{Rk,s,fi}	[Nm]	0,7	1,3	2,5	6,3	0,1	0,7	1,3
5	R120	M _{Rk,s,fi}	[Nm]	0,5	1,0	1,8	4,7	0,1	0,5	1,0
1) montial factor in some of fire is 1.0 for	ببلا معلم المي	امدرم مرم	المحمل وال							

1) partial factor in case of fire is 1,0 for all steel types and load directions.

Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry	
Performances Characteristic steel resistance under tension and shear load – under fire	Annex C 2
exposure	

Brick type			Aut	Contract of the second	rated conc	rete			-				
Density	ρ	[kg/dm	3] 0,3	5 - 0,6									
Normalised m compressive	The second se	[N/mm	²] ≥2,	, ≥ 4 or ≥ 6				1	120				
Code			EN	771-4:201	1+A1:2015	a il sur							
Producer (Co	untry)		e.g	. Porit (DE)	10 Aug					P			
Brick dimensi	ons [n	nm]	≥ 4	99 x 240 x	249								
Drilling metho	d		Rot	tary drilling	1								
Table C5:	Installatio	on para	ameter					12.2					
Anchor size	7		[-]	M8	M10	M12	M16	IG-N	/6 IG-M8	IG-M10			
Installation to	que	Tinst	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	5 ≤ 5	≤ 10			
Char. Edge d	stance	Cor	[mm]	150) (for shear	loads perp	pendicula	ar to the f	ree edge: ccr	= 210)			
Minimum Edg	e Distance	Cmin	[mm]	1		1.1.1	50						
	P	Scr. II	[mm]				300	1					
Characteristic	Spacing	Scr. 1	[mm]	1			250	-					
Minimum Spa	cing	Smin, II; Smin, 1	[mm]				50	0					
Table C6:	Reduction		ors for	single an	chors at		1						
т	ension load		_	Shear load									
2				Perpendic	ular to the	free edge	-	Parall	el to the free	edge			
i	with c ≥	Cledge, I	V	- 1	with c ≥	CLedge, V			with c ≥	Cledge, V II			
	50	0,85			50	0,12		+	50	0,70			
1	450			-	125	0,50	- 12	1	125	0,85			
	150	1,00			210	1,00			150	1,00			
Table C7:	Factors for	or anc	hor gr	oups und	er tension	n load							
An	chor position p	oarallel	to hor.	joint		Anchor	position	perpend	cular to hor.	oint			
	with c ≥	Wit	hs≥	Ølg II. I	¥.	- 1	with c	2	with s ≥	αg⊥, N			
	50	-	50	1,10			50		50	0,75			
	150	-	50	1,25			150		50	0,90			
	150	3	300	2,00			150	1.1	250	2,00			
Table C8:	Factors for	anch	or gro	ups unde	r shear lo	ad							
	Anch	or posit	ion par	allel to hor.	joint	Anc	hor posit	ion perpe	ndicular to h	or. joint			
Shear load		i with	102	with s ≥	αg II.V⊥	1	v	vith c ≥	with s ≥	α,g⊥,V⊥			
perpendicular		E	50	50	0,20		1 - C	50	50	0,25			
to the free		2	10	50	1,60			210	50	1,80			
edge		2	10	300	2,00			210	250	2,00			
Shear load	1	with	lC≥	with s ≥	¢kg II,V II	100	1 V	vith c ≥	with s ≥	Clg ⊥,V II			
parallel to the			50	50	1,15			50	50	0,80			
free edge	-		50	50	1,60			150	50	1,10			
		1	50	300	2,00		1	150	250	2,00			
Injection sys masonry	stem EJOT M	ultifix \	/inyles	ter / Sorma	at ITH Viny	lester for							

	0			Chara	cteristic Res	istances w	ith c ≥ c _{cr} a	and s ≥ s _{cr}			
	eve					Use condit	on				
Anchor size	Perforated sleeve	Effecitve Anchorage depth		d/d			w/d w/w		d/d w/d w/w		
Anchor Size	Perfo		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All temperature ranges		
	ds	h _{ef}	Ν	$\mathbf{N}_{Rk,b} = \mathbf{N}_{Rk,p}$	1)	1	$N_{Rk,b} = N_{Rk,j}$	1) D	V _{Rk,b} ¹⁾		
	[mm]	[mm]				[kN]					
	ed mear	o compre	ssive strenght $f_b \ge 2 \text{ N/mm}^2$; Density $\rho \ge 0.35 \text{ kg/dr}$								
M8	-	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5		
M10 / IG-M6	-	90	1,2	0,9	0,9	0,9	0,9	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	-	100	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
M8	SH 12	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5		
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	0,9	0,9	0,9	0,9	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	2,0	1,5	1,5	1,5	1,5	1,5	2,5		
1) N _{Rk,b,c} = N _{Rk,p,c} an	Id V _{Rk,c} II =	= V _{Rk,c} ⊥aco	cording to Ar	nnex C 3							
			Characteristic Resistances with $c \ge c_{cr}$ and $s \ge s_{cr}$								
	Beve					Use condit					
A mahan aira	Perforated sleeve	Effecitve Anchorage depth		d/d			w/d w/w		d/d w/d w/w		
Anchor size	Perfo	Ano d	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All temperature ranges		
	ds	h _{ef}	Ν	NRK,b = NRK,p	1)	1	$N_{Rk,b} = N_{Rk,j}$	1) D	$V_{Rk,b}^{(1)}$		
	[mm]	[mm]				[kN]					
Normalis	ed mear	compre	ssive stren	ight f _b ≥4	N/mm²;		Density ρ	≥ 0,50 kg/d	lm³		
M8	-	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5		
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	2,0	7,5		
M12 / M16 / IG-M8 / IG-M10	-	100	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
M8	SH 12	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5		
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	2,5	2,0	2,5	2,0	2,0	7,5		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	5,0	4,5	4,0	4,5	4,0	4,0	7,5		
1) $N_{Rk,b,c} = N_{Rk,p,c}$ and	id V _{Rk,c II} =	= V _{Rk,c} ⊥aco	cording to Ar	nnex C 3							
Injection system masonry	EJOT M	ultifix Vin	ylester / S	ormat ITH	Vinylester	for					
Performances aut Characteristic Resi				AAC				Annex C	5		

Brick type: Aut	oclave	ed aerate	ed concr	ete – AA	C							
				Chara	cteristic R	esista	inces w	vith c ≥ c _{cr}	and s ≥ s _{cr}			
	0					Use	e condit	ion				
	Perforated sleeve	Effecitve Anchorage depth		d/d				w/d w/w		d/d w/d		
Anchor size	ated	Anch de				_				w/w All		
	erfor					C 40°			120°C/72°C	temperature ranges		
		h _{ef} [mm]	Ν	$\mathbf{J}_{Rk,b} = \mathbf{N}_{Rk,p}$	1)		[kN]	$N_{Rk,b} = N_{Rk}$	VRk,b ¹⁾			
Normalis	ed mean		ssive stren	aht f⊾ > 6	N/mm ² ·			Density o	ρ ≥ 0,60 kg/dm³			
M8	-	80	4,0	3,5	3,0		3,5	3,0	3,0	6,0		
M10 / IG-M6	-	90	4,0	3,5	3,0		3,5	3,0	3,0	10,0		
M12 / M16 / IG-M8 / IG-M10	-	100	7,0	6,0	5,5		6,5	5,5	5,5	10,0		
M8	SH 12	80	4,0	3,5	3,0		3,5	3,0	3,0	6,0		
M8 / M10/ IG-M6	SH 16	≥ 85	4,0	3,5	3,0		3,5	3,0	3,0	10,0		
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	7,0	6,0	5,5		6,5	5,5	5,5	10,0		
1) N _{Rk,b,c} = N _{Rk,p,c} an	d V _{Rk,c II} =	= V _{Rk,c} ⊥acc	ording to Ar	inex C 3								
Table C10: Dis	splacen		1									
Anchor siz	e	h _{ef} [mm]	δ _N / N [mm/kN]	<u>اہ</u> m[/ / V m/kN]	δvo [mm]	δ∨∞ [mm]		
M8 – M12		all						-	0,3*V _{Rk} / 2,8			
IG-M6 – M M16	10	all	0,1 0,1*N _R		Rk / 2,8	2*δN0		D,1	0,1*V _{Rk} / 2,8	1,5*δvo		
Injection system I masonry Performances aut Characteristic Resi	oclaved	aerated	concrete –		Vinyleste	er for			Annex C	6		

		scription	Sol	id calcium	n silica brid	k KS-N	F					
Brick type Density	0	[kg/dm ³]	≥ 2,	The second statement is a second	romoa orn		-					
Normalised r	nean f.	[N/mm ²]	≥ 2								5	
	actor for lower		15.1	28) ^{0,5} ≤ 1	0		-			1	1	
compressive	strengths		125					- 8	1.00	1		
Code Producer (Co	(untru)			7/1-2:20 Wemdin	11+A1:20	15			100	× .		
Brick dimens		າກາງ		40 x 115 :		_			-			
Drilling meth		ing .		nmer drill			-					
Table C12:	The second second second	n narame		THE REAL								
Anchor size	motunatio	n parame	101	[·]	M8	M10	M12	M16	IG-M	6 IG-	MR	IG-M1
Installation to	raue	Tinst		[Nm]	≤ 10	≤10	≤ 15	≤15	≤ 10		10	≤ 10
Char. Edge d		- 24 T.M.			- 18 1	- 19 1	- 10	150 (2 h				1 - 19
under fire co		Cor; (Cor.))	[mm]	(for she	ear load	s perpe	ndicular to		e edge:	Cor =	= 240)
Minimum Edg	e Distance	Cmin		[mm]	0.000			60				
Characteristic	Spacing	Ser. It: (Ser.I	i, ii)	[mm]				240 (4 he				
(under fire co	and the second sec	Scr. 1: (Scr.t	i, 1)	[mm]				150 (4 he)			
Minimum Spa	cing	Smin, II; Smi	in, L	[mm]	-			75				
Table C13:	Reduction	n factors	for s	ingle an	chors at	the ed	ge					
	Tension load		She	ar load pe	erpendicula	ar to free	edge	Shear	load pa	arallel to	free	edge
	with c ≥	Cledge, N	1.0		with c ≥	Cled	ge,V⊥		V	vith c ≥	1	CLedge, V II
-	60 ¹)	0,50	-	_	60	0	,30	1		60		0,60
•	1001)	0,50			100	0	,50			100		1,00
	150 ¹⁾ 180	1,00	10	1	240	1	.00			150		1.00
 All applica 	tions, except for		m and	without sl	eeve			-			-	
	tions, except for Factors for	hef = 200m				n load					1	
Table C14:	Factors fo	hef = 200m or anchor	grou	ups und		The second second	chor pos	sition perpe	endicula	r to hor	íoint	1
Table C14:	Factors fo	hef = 200m or anchor parallel to he	grou or. joi	u ps und nt	er tensio	The second second	-	sition perpe	ALC: N. L. L. L. P. M. L. L. L.		-	
Table C14:	Factors for nchor position p with c ≥	hef = 200m or anchor parallel to he with s	grou or. joi	u ps und nt α _{g II, N}	er tensic	The second second	w	ithc≥	with	S≥	-	αg I, N
Table C14:	Factors for nchor position p with $c \ge 60^{1}$	hef = 200m or anchor parallel to he with s 75	grou or. joi	u ps und nt α _{g II, N} 0,70	er tensio	The second second	w	ith c ≥ 60 ¹⁾	with 75	S≥ 5	-	α _{g 1, N} 1,15
Table C14:	Factors for nchor position p with $c \ge 60^{1}$ 150^{1}	hef = 200m or anchor barallel to he with s 75 75	grou or. joi	ups und nt 0,70 1,40	er tensic	The second second	w	ith c ≥ 60 ¹⁾ 150 ¹⁾	with 75	s≥ 5 5	-	α _{g 1, N} 1,15 2,00
Table C14:	Factors for nchor position p with $c \ge 60^{11}$ 150^{11} 150^{11}	hef = 200m or anchor parallel to he with s 75 75 240	grou or. joi	ups und nt 0,70 1,40 2,00	er tensic	The second second	w	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾	with 75 75 15	s≥ 5 5 0	-	α _{g 1, N} 1,15 2,00 2,00
Table C14:	Factors for nchor position p with $c \ge 60^{11}$ 150^{11} 150^{11} 180^{21}	hef = 200mr or anchor parallel to he with s 75 75 240 75	grou or. joi	u ps und nt 0,70 1,40 2,00 1,00	er tensio	The second second		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾	with 75 75 15 75	s≥ 5 5 0 5	-	α _{g 1.N} 1,15 2,00 2,00 1,15
Table C14:	Factors for nchor position p with $c \ge$ 60^{1} 150^{1} 150^{1} 180^{2} 180^{2}	hef = 200m or anchor parallel to he with s 75 75 240 75 240	grou or. joi	ups und nt 0,70 1,40 2,00 1,00 1,70	er tensic	The second second		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾	with 75 75 15	s≥ 5 5 0 5	-	α _{g 1, N} 1,15 2,00 2,00
Table C14:	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 180^{21} 240^{21}	hef = 200m parallel to he with s 75 75 240 75 240 240 240	groi or. joi	ups und nt 0,70 1,40 2,00 1,00 1,70 2,00	er tensic	The second second		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾	with 75 75 15 75	s≥ 5 5 0 5	-	α _{g 1, N} 1,15 2,00 2,00 1,15
Table C14: A 1) All applica	Factors for nchor position p with $c \ge$ 60^{1} 150^{1} 150^{1} 180^{2} 180^{2}	hef = 200m parallel to he with s 75 75 240 75 240 240 240 hef = 200m	groi or. joi ≥	ups und nt 0,70 1,40 2,00 1,00 1,70 2,00 without slo	eeve	The second second		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾	with 75 75 15 75	s≥ 5 5 0 5	-	α _{g 1, N} 1,15 2,00 2,00 1,15
1) All applica 2) Only for a	Factors for nchor position p with $c \ge$ 60^{1} 150^{1} 150^{1} 180^{2} 180^{2} 240^{2} tions, except for pplication with he	hef = 200m parallel to he with s 75 75 240 75 240 240 hef = 200m e = 200mm	grou or. join ≥ m and and wi	αg II, N αg II, N 0,70 1,40 2,00 1,70 2,00 1,70 2,00 without sleet	eeve ve	An		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾	with 75 75 15 75	s≥ 5 5 0 5	-	α _{g 1.N} 1,15 2,00 2,00 1,15
1) All applica 2) Only for a	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200m or anchor parallel to he with s 75 75 240 75 240 240 240 240 hef = 200mm a 200mm a concentration	groi or. join ≥ m and and wi groi	αg II. N αg II. N 0,70 1,40 2,00 1,70 1,70 2,00 1,70 2,00 1,70 2,00 1,70 2,00 1,70 2,00 without slice ups under	er tensic	An		ith c \geq 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾	with 75 75 15 75 15	S≥ 5 0 5 0		α _{g 1.N} 1,15 2,00 2,00 1,15 2,00
1) All applica 2) Only for a Table C15:	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200m or anchor parallel to he with s 75 75 240 75 240 240 240 e 200mm a 200mm a concorr position	grou pr. join ≥ m and and wi grou paral	αg ii. N αg ii. N 0,70 1,40 2,00 1,00 1,70 2,00 1,70 2,00 1,90 1,70 2,00 intro and an an an and an and an	er tensic	An		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾	with 75 15 75 15 15	s ≥ 5 0 5 0 5 0 0		αg 1.N 1,15 2,00 2,00 1,15 2,00
1) All applica 2) Only for a Table C15: Shear load	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for Anch	hef = 200m parallel to he with s 75 75 240 75 240 240 hef = 200mm a 200mm a c 200mm a c anchor hor position with c 2	grou pr. join ≥ m and and wi grou paral	ups und nt 0,70 1,40 2,00 1,00 1,70 2,00 without sleven ups und lel to hor. with s ≥	er tensic	An		ith c \geq 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾	with 75 15 75 15 15	$s \ge$ 5 0 5 0 0 cular to P vith $s \ge$		$\alpha_{g \perp, N}$ 1,15 2,00 2,00 1,15 2,00 1,15 2,00 0int $\alpha_{g \perp, V \perp}$
1) All applica 2) Only for a Table C15:	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for Anch	hef = 200m or anchor parallel to he with s 75 75 240 75 240 240 240 e 200mm a 200mm a concorr position	grou pr. join ≥ m and and wi grou paral	αg ii. N αg ii. N 0,70 1,40 2,00 1,00 1,70 2,00 1,70 2,00 1,90 1,70 2,00 intro and an an an and an and an	er tensic	An		ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ with c	with 75 15 75 15 15	s ≥ 5 0 5 0 5 0 0		αg 1.N 1,15 2,00 2,00 1,15 2,00
1) All applica 2) Only for a Table C14: 4 1) All applica 2) Only for a 5 Shear load perpendicula to the free	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for Anch	hef = 200mm or anchor parallel to her with s 75 75 240 75 240 75 240 75 240 75 240 75 240 75 240 60	grou pr. join ≥ m and and wi grou paral	ups und nt 0,70 1,40 2,00 1,00 1,70 2,00 without sleeven ups und lel to hor. with s ≥ 75	er tensic	An	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ with c 60	with 75 15 75 15 15	$s \ge$ 5 0 5 0 0 cular to P $vith s \ge$ 75		$\alpha_{g \perp, N}$ 1,15 2,00 2,00 1,15 2,00 1,15 2,00 0 int $\alpha_{g \perp, V \perp}$ 0,90
Table C14: A A	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for Anch	hef = 200mm or anchor parallel to he with s 75 75 240 75 240 240 240 240 240 9 200mm a or anchor nor position with c 2 60 150 150	grou or. joi ≥ m and and wi grou paral ≥	ups und nt 0,70 1,40 2,00 1,00 1,70 2,00 1,70 2,00 without slet thout sleev ups und lel to hor. with s ≥ 75 75	er tensic	An	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ with c 60 150	with 75 15 75 15 15 15 2 ⊻ 2 ∨	s ≥ 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 75 75		$\alpha_{g \perp, N}$ 1,15 2,00 2,00 1,15 2,00 1,15 2,00 0,00 2,00 2,00 $\alpha_{g \perp, V \perp}$
Table C14: A	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200mm parallel to humor with s 75 75 240 75 240 75 240 75 240 75 240 75 240 75 240 61 200mm a 60 150 150 with c 2 60	grou or. joi ≥ m and and wi grou paral ≥	ups und nt $\alpha_{g l, N}$ 0,70 1,40 2,00 1,00 1,00 1,70 2,00 without sleven ups und lel to hor. with s ≥ 75 240 with s ≥ 75	er tensic	An	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ² 180 ² 150 150 150 150	with 75 15 75 15 15 15 2 ⊻ 2 ∨	$s \ge$ 5 5 0 0 cular to 1 $vith s \ge$ 75 75 150 $vith s \ge$ 75 75		$ \frac{\alpha_{g \perp, N}}{1,15} \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Table C14: A <p< td=""><td>Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for</td><td>hef = 200mm parallel to he with s 75 75 240 75 240 240 240 240 hef = 200mm 240 hef = 200mm 200mm a position with c 2 60 150 with c 2 60 150</td><td>grou or. joi ≥ m and and wi grou paral ≥</td><td>ups und nt $\alpha_{g l, N}$ 0,70 1,40 2,00 1,00 1,00 1,70 2,00 without slet thout sleev ups und lel to hor. with s ≥ 75 240 with s ≥ 75 240 with s ≥ 75 75 240</td><td>er tensic</td><td>An</td><td>Anchor</td><td>ith c ≥ 60¹⁾ 150¹⁾ 150¹⁾ 180²⁾ 180²⁾ 180²⁾ 180²⁾ 180²⁾ 180²⁾ 180² 180² 150 150 150 150 150 150 150 150</td><td>with 75 15 75 15 15 15 2 ⊻ 2 ∨</td><td>$s \ge$ 5 5 0 0 0 150</td><td></td><td>$\begin{array}{c} \alpha_{g \perp, N} \\ 1,15 \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \end{array}$</td></p<>	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200mm parallel to he with s 75 75 240 75 240 240 240 240 hef = 200mm 240 hef = 200mm 200mm a position with c 2 60 150 with c 2 60 150	grou or. joi ≥ m and and wi grou paral ≥	ups und nt $\alpha_{g l, N}$ 0,70 1,40 2,00 1,00 1,00 1,70 2,00 without slet thout sleev ups und lel to hor. with s ≥ 75 240 with s ≥ 75 240 with s ≥ 75 75 240	er tensic	An	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ² 180 ² 150 150 150 150 150 150 150 150	with 75 15 75 15 15 15 2 ⊻ 2 ∨	$s \ge$ 5 5 0 0 0 150		$\begin{array}{c} \alpha_{g \perp, N} \\ 1,15 \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \end{array}$
Table C14: A <p< td=""><td>Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for</td><td>hef = 200mm parallel to humor with s 75 75 240 75 240 75 240 75 240 75 240 75 240 75 240 61 200mm a 60 150 150 with c 2 60</td><td>grou or. joi ≥ m and and wi grou paral ≥</td><td>ups und nt $\alpha_{g l, N}$ 0,70 1,40 2,00 1,00 1,00 1,70 2,00 without sleven ups und lel to hor. with s ≥ 75 240 with s ≥ 75</td><td>er tensic</td><td>An</td><td>Anchor</td><td>ith c ≥ 60¹⁾ 150¹⁾ 150¹⁾ 180² 180² 150 150 150 150</td><td>with 75 15 75 15 15 15 2 ⊻ 2 ∨</td><td>$s \ge$ 5 5 0 0 cular to 1 $vith s \ge$ 75 75 150 $vith s \ge$ 75 75</td><td></td><td>$\frac{\alpha_{g \perp, N}}{1,15} \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$</td></p<>	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200mm parallel to humor with s 75 75 240 75 240 75 240 75 240 75 240 75 240 75 240 61 200mm a 60 150 150 with c 2 60	grou or. joi ≥ m and and wi grou paral ≥	ups und nt $\alpha_{g l, N}$ 0,70 1,40 2,00 1,00 1,00 1,70 2,00 without sleven ups und lel to hor. with s ≥ 75 240 with s ≥ 75	er tensic	An	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ² 180 ² 150 150 150 150	with 75 15 75 15 15 15 2 ⊻ 2 ∨	$s \ge$ 5 5 0 0 cular to 1 $vith s \ge$ 75 75 150 $vith s \ge$ 75 75		$ \frac{\alpha_{g \perp, N}}{1,15} \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
1) All applica 2) Only for all Table C15: Shear load perpendicula to the free edge Shear load parallel to the free edge	Factors for nchor position p with $c \ge$ 60^{11} 150^{11} 150^{11} 180^{21} 240^{21} tions, except for pplication with he Factors for	hef = 200mm parallel to he with s 75 75 240 75 240 240 240 hef = 200mm =	grou or. joi ≥ 2 mm and and wi grou paral 2 2	ups under $\alpha_{g l, k}$ $\alpha_{g l, k}$ 0,70 1,40 2,00 1,00 1,70 2,00 without slet thout slet thout slet thout slet thout slet ups unde lel to hor. with s ≥ 75 240 with s ≥ 75 75 240	er tensic	An Ioad	Anchor	ith c ≥ 60 ¹⁾ 150 ¹⁾ 150 ¹⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ²⁾ 180 ² 180 ² 150 150 150 150 150 150 150 150	with 75 15 75 15 15 15 2 ⊻ 2 ∨	$s \ge$ 5 5 0 0 0 150		$\begin{array}{c} \alpha_{g \perp, N} \\ 1,15 \\ 2,00 \\ 2,00 \\ 1,15 \\ 2,00 \\ 1,15 \\ 2,00 \\ 0,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \\ 2,00 \end{array}$

Brick type: Sol	id calc	ium silio	ca brick	KS-NF								
Table C16: Ch	aracter	istic valu	ues of ter	nsion and	shear loa	d resista	nces					
				Chara	cteristic Res	sistances w	vith c ≥ c _{cr}	and s ≥ s _{cr}				
	e,	e e				Use condit	ion					
	leev	oraç oraç		d/d				d/d				
	d S	dep dep					w/w	1	w/w (w/d)			
Anchor size	Perforated sleeve	Effecitve Anchorage depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All temperature			
	erfe								ranges			
	ď	h _{ef}	I	$N_{Rk,b} = N_{Rk,j}$	2) p	1	NRK,b = NRK,	2) p	V _{Rk,b} ²⁾			
		[mm]				[kN]						
		Normalis	d mean compressive strength f _b ≥ 28 N/mm ^{2 1)}									
M8	-	80										
M10 / IG-M6	-	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0				
M12 / IG-M8	-	≥ 100										
M16 / IG-M10	-	≥ 100	7,0	6,5	5,0	7,0	6,5	5,0				
M10 / M12 / M16 / IG-M6 / IG-M8 / IG-M10	-	200	9,0	8,5	6,5	5,5	5,0	4,0	7,0			
M8	SH 12	80	7,0	6,5	5,0	6,0	5,5	4,0				
M8 / M10/ IG-M6	SH 16	≥ 85										
M12 / M16 / IG-M8 / IG-M10	SH 20	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0				

 For lower compressive strengths resistances must be multiplied by the conversion factor according to Table C11. For stones with higher strengths, the shown values are valid without conversion.

2) $N_{Rk,b,c} = N_{Rk,p,c}$ and $V_{Rk,c II} = V_{Rk,c \perp}$ according to Annex C 3

Table C17: Displacements

Anchor size	hef	δΝ / Ν	δΝΟ	δN∞	δγ / V	δνο	δ∨∞
Anchor Size	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – M10	all	0.1	0.1*NI / 0.5	0*5	0,3	0,3*V _{Rk} / 3,5	1,5*δvo
M16	all	0,1	0,1*N _{Rk} / 3,5	2*δΝ0	0,1	0,1*V _{Rk} / 3,5	1,5*δvo

Table C18: Characteristic values of tension and shear load resistances under fire exposure

		Effective		Characteristic	c Resistances	
Anchor size	Perforated	anchorage depth		$N_{Rk,b,fi} = N_R$	k,p,fi = VRk,b,fi	
Anchor size	sleeve	h _{ef}	R30	R60	R90	R120
		[mm]		[k	N]	
M8	-	80				
M10 / IG-M6	-	≥ 90	0,48	0,41	0.34	0.30
M12 / IG-M8	-	≥ 100	0,40	0,41	0,34	0,30
M16 / IG-M10	-	≥ 100				
M8	SH 12	80				
M8 / M10 /IG-M6	SH 16	≥ 85	0.47	0.26	_ 1)	_ 1)
M12 / M16 /	SH 20	≥ 85	0,47	0,20	- ')	- '/
IG-M8 /IG-M10	3H 20	202				
1) no norformono o						

Annex C 8

1) no performance assessed

Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry

Performances solid calcium silica brick KS-NF	
Characteristic Resistances and Displacements	

Injection sys masonry Performance						ester for		A	nnex C 9	
Inioation cu	120	1,00	linulanta		240	1,00	P	4	120	1,00
•	60	1,00	<u>- 1</u>		60	0,30		1	60	1,00
	with c ≥	Ø.edge, N	15		with c ≥	Cledge, V ⊥			vith c ≥	Cledge, V II
Ţ	ension load		F	Perpendic	ular to the fr				the free e	dge
Table C21:		on facto	rs for s	ingle an	chors at th	and the second sec	ar load			
Minimum Spa	A 10 40	Smin, 1	[mm]		Q. P. C. 43.5		120			
	00000	Scr, 1 Smin, II;	[mm]				120			
Characteristic	Spacing	Scr, II	[mm]			-	240			
Minimum Edg		Cmin	[mm]	1.000		2.22.22.07.27.16 ¹ .77	60			in the
Char. Edge d	11 III III III III III III III III III	Cer	[mm]	and the second	(for shear lo	100 To 100 To 100		2.2	1. State 1.	1
Installation to	rque	Tinst	[-] [Nm]	×18 ≤ 5	≤5	≤8	×10 ≤ 8	IG-1016 ≤ 5	IG-1018 ≤ 8	IG-M11 ≤ 8
Anchor size	Installat	ion para		M8	M10	M12	M16	IG-M6	IG-M8	IG-M1
Table C20:	Installat	-					14 44 14	- 175		
Brick dimensi Drilling metho		(mm)		0 x 175 x ⁻ ry drilling	113			_		
Producer (Co				<s-wemd< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td></s-wemd<>				-	-	
Code	atongina		EN 7	71-2:2011	+A1:2015				2	e
Conversion fa	ctor for lowe	er	(f _b / 1	4) ^{0.75} ≤ 1,	0			1.00	92	
compressive		fo [N/mm ²] ≥14					100	63	E3
		p [kg/dm ³							- 2	
Density Normalised m			NSL-	3DF						

Table C22:	and the second	Constraint of Artificial Street, St.	groups u	nder ten	and the second sec		-			a. 215
Anch	nor position p				A	nchor p			ndicular to hor.	joint
	with c ≥	with s		II.N			with	C≥	with s ≥	αg 1, N
100	60 120	120		,50			60)	120	1,00
	120	240		.00	1		12	0	120	2,00
T. L.L. 000						_	112	<u> </u>	120	2,00
Table C23:	the second se		groups u		ear load		13-22-1	tat a conserv		an total
Shear load	Anch	with c	parallel to h		200	Anch	or pos	with c ≥	rpendicular to f with s ≥	1
perpendicular	Sec. And	60	120	≥ α _{g II} , 0,3				with G 2	e with s ≥	αg⊥v⊥
to the free		120	120	1,0			-	60	120	0,30
edge	(the second sec	120	240	240 2,00			4	240	120	2,00
Shear load		with c a	≥ with s a	the second se		-	-1	with c ≥	with s ≥	ag 1.V II
parallel to the		60	120	1,00				60	120	1,00
free edge		120	120	1,6	the second se			_	1	0.000
500 T 1		120	240	2,0	0			120	120	2,00
Table C24:	Character	ristic valu	les of tens	ion and	shear l	oad re	sista	nces		
				Charac	teristic R	esistar	ices w	/ith c≥ c	c _r and s ≥ s _{cr}	
	æ	e e				Use	condit	ion		
	Perforated sleeve	Effecitve Anchorage depth		d/d				w/d w/w		d/d w/d w/w
Anchor size	orated	-	40°C/24°C 8	0°C/50°C	120°C/72	°C 40°C	2/24°C	80°C/50	0°C 120°C/72°G	All temperatu
	erfe		10 0/24 0 0	0 0/00 0	120 0172		1240	00 0/50	0120 012 0	ranges
	<u> </u>	het	Ne	Nek,b = Nek,p ²⁾		NRk,b =			2) RK,p	VRk,b ⁽²⁾
		[mm]					[kN]			
		Normalise	ed mean co	mpressiv	ve streng	th f _b ≥	14 N/	mm ^{2 1)}		
M8 / M10/	SH 16	≥ 85	2,5	2,5	1,5	2	2,5	2,5	1,5	6,0
IG-M6	51 10	130	2,5	2,5	2,0	2	2,5	2,5	2,0	6,0
M12/M16/ IG-M8/IG-M1		≥ 85	6,5	6,0	4,5	e	6,5	6,0	4,5	6,0
 For lower corwith higher state NRK,b,c = NRK,p Table C25: 	npressive stre rengths, the s	hown value VRK,c 1 acco	s are valid wi ording to Ann	thout conv ex C 3	ersion.	onversi			ding to Table C1	9. For stones
Ancho	r size	her	δN/N	δΝ		δN∞		//V	δγο	δV∞
M8 – 1		[mm]	[mm/kN]	[mi	m]	[mm]	1.5	n/kN]	[mm]	[mm]
IG-M6		all	0,13	0,13*N	Rk / 3.5	2*8N0	C	,55	0,55*VRk/3,5	1,5*δVC
Mi	6	all				~ ~ ~	0	,31	0,31*V _{Rk} /3,5	1,5*8vc
Injection systemation masonry		ultifix Viny	0000000		Vinylest	er for			Annex C	10

Brick type		Hollo KSL-		n silica brick	¢				
Density	p [kg/dm					-	-		
Normalized mean							100		V
compressive strengnt	f _b [N/mm	2] ≥ 12	1000				100		λ
Conversion factor for lowe compressive strengths	er	(fb / 1	$2)^{0.75} \le 1,0$	0			-		
Code		EN 7	71-2:2011	+A1:2015		19			1.
Producer (Country)			<s-wemdi< td=""><td>100 CL CL 200 CT 201 L TT 10</td><td></td><td></td><td>1</td><td></td><td></td></s-wemdi<>	100 CL CL 200 CT 201 L TT 10			1		
Brick dimensions	[mm]		3 x 240 x 2			1	1000		2
Drilling method		Rota	ry drilling	<u>. 1919</u>		· · · · · · · · · · · · · · · · · · ·			
		5	021	-05:0 	3				
		<u>- 63</u>			60				
Table C27: Installa	tion para								
Table C27: Installat Anchor size	tion para					M16	IG-M6	IG-M8	IG-M10
Anchor size Installation torque	tion para	ameter [-] [Nm]	25 25	50 M10 ≤ 5	60 	≤ 8	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance		ameter [-] [Nm] [mm]	25 25	50 M10	60 	≤ 8 endicular	≤ 5	≤ 8	≤8
Anchor size Installation torque	Tinst	ameter [-] [Nm] [mm] [mm]	25 25	50 M10 ≤ 5	60 	≤ 8 endicular 50	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	25 25	50 M10 ≤ 5	60 	≤ 8 endicular 50 250	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance	Tinst Ccr Cmin Scr, II Scr, 1	ameter [-] [Nm] [mm] [mm]	25 25	50 M10 ≤ 5	60 	≤ 8 endicular 50	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	25 25	50 M10 ≤ 5	60 	≤ 8 endicular 50 250	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, I	(Nm) [mm] [mm] [mm] [mm] [mm]	25 	50 M10 ≤ 5	M12 ≤ 8 oads perpe	≤ 8 endicular 50 250 120	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C28: Reducti	Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, I	(Nm) [mm] [mm] [mm] [mm] [mm]	25 	50 M10 ≤ 5 (for shear I	M12 ≤ 8 oads perpe	≤ 8 endicular 50 250 120	≤ 5	≤ 8	≤8
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, I	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	25 ≤ 5 120	50 M10 ≤ 5 (for shear I	M12 ≤ 8 oads perpe	≤ 8 endicular 50 250 120 50	≤ 5 to the free	≤ 8	≤ 8 = 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C28: Reducti	Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, I	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] prs for s	25 ≤ 5 120	M10 ≤ 5 (for shear i	M12 ≤ 8 oads perpe	≤ 8 endicular 50 250 120 50 ear load	≤ 5 to the free Parallel 1	≤ 8 e edge: c _{cr} =	≤ 8 = 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C28: Reducti Tension load ● With c ≥ 50	Tinst Ccr Cmin Scr, U Scr, L Smin, II; Smin, I Confractor Ccedge, N 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] prs for s	25 ≤ 5 120	M10 ≤ 5 (for shear l chors at the ular to the fi with c ≥ 50	M12 ≤ 8 oads perpe he edge Sh ree edge α _{edge, √ 4} 0,30	≤ 8 endicular 50 250 120 50 ear load	≤ 5 to the free Parallel t	≤ 8 e edge: $c_{cr} =$ o the free e with c \geq 50	≤ 8 250) dge α _{edge} ∨ 1,00
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C28: Reducti Tension load	Tinst Ccr Cmin Scr, U Scr, ⊥ Smin, I; Smin, ⊥	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] prs for s	25 ≤ 5 120	M10 ≤ 5 (for shear l chors at the ular to the fi with c ≥	M12 ≤ 8 oads perpe	≤ 8 endicular 50 250 120 50 ear load	≤ 5 to the free Parallel 1	≤ 8 edge: c _{cr} = o the free e with c \geq	≤ 8 250) dge c(edge, V)

Table C29:	and the second	and the second second second second	and the second second second second	under ter	Contraction of the second second	1.		1. D	A	4193.
And	hor position			A	A	ncho			dicular to hor.	joint
1000	with c ≥	with s		αg II, N	-	1	with		with s ≥	αg 1, Ν
	50	50		1,00	1.11		50		50	1,00
- 1	120	250)	2,00		1	12	0	120	2,00
Table C30:	Factors	for ancho	r groups	under sh	ear load	100				
12.20	Anc	hor position	n parallel to	o hor. joint		And	hor pos	sition perp	pendicular to I	nor. joint
Shear load		with c	≥ with s	S≥ αgit	V1		T.	with $c \ge$	with s ≥	α/g⊥, V⊥
perpendicular	10.000	50	50	0,4	45	-		50	50	0,45
to the free		250	50) 1,1	15	1.1.2	•	250	50	1,20
edge		250	250	0 2,0	00			250	250	2,00
Shear load		with c	≥ with s	s≥ αg∥	,γ II		-	with $c \ge$	with s ≥	Ω(g ⊥,V II
parallel to the		50	50) 1,3	30		1	50	50	1,00
free edge	. f	120	250	0 2,0	00			120	250	2,00
Table C31:	Characte	eristic val	ues of ter	nsion and	shear l	oad r	resista	nces		
				Charac	cteristic R	Resista	ances w	with $c \ge c_c$	r and s ≥ s _{cr}	
			1 faire a subtrain							
	sleeve	Effecitve Anchorage depth		d/d				w/d w/w		d/d w/d
Anchor size	w Perforated sleeve	Anc	40°C/24°C	80°C/50°C	120°C/72	°C 40	°C/24°C	80°C/50°	C 120°C/72°C	w/w All Temperatu
	Pe	6		1	2)				2)	ranges
		het	1	NRK,b = NRK,p	o	[kN]		NRK.b = NR	RK,p	VRk.b ²⁾
1	-	[mm] Normalis	ed mean (compressi	vo etrono	ath f.		mm2 1)		
M8 / M10/ IG-M6	SH 16		5,0	4,5	3,5		5,0	4,5	3,5	3,5
M12 / M16 IG-M8 / IG-M	SH 21) ≥ 130	5,0	4,5	3,5		5,0	4,5	3,5	6,0
 For lower co with higher NRk.b.c = NRk Table C32: 	strengths, the	shown valu = V _{Rk,c} ±ac	es are valid	without conv		conver	sion fact	or accordi	ng to Table C2	 For stones
Anah		het	δN/N	δı	NO	δN∞	51	//V	δνο	δV∞
Anch	or size	[mm]	[mm/kN] (m	m]	[mm]] [m	n/kN]	[mm]	[mm]
	M12/ - M10	all	0.40	0.4000	10.5	-	C	,55	0,55*VRk/ 3,5	5 1,5*δνο
	116	all	0,13	0,13*N	Rk / 3,5	2*8N	0 0	,31	0,31*V _{Rk} /3,5	5 1,5*δvo
								1		
Injection sys	tem EJOT N	Aultifix Vin	ylester / S	ormat ITH	Vinylest	er for				

Brick type				alcium silica	brick	-				
			KSL-12DF		_	-				a
Density Normalised r		p [kg/dm ³]	≥ 1,4		_	-		33	2.5	1.0
compressive		f _b [N/mm ²]	≥12			1.1	Con.	23	-	
		er compressive	(f _b / 12) ^{0,75}	⁵ ≤ 1,0			1-	-		
Code			EN 771-2	:2011+A1:20	015	-	1			
Producer (Co	ountry)			lemding (DE		_				
Brick dimens		[mm]	≥ 498 x 1							
Drilling method	od		Rotary dri	lling				_		
) (64 - 59		- (14 - -		65 1 35		
			4	98				100		
Table C34:	- Installat	ion paramete	er							
Anchor size			er [-]	M8 1		M12	M16	IG-M6	IG-M8	
Anchor size	orque	ion paramete	er	M8 1	M10 ≤ 4	≤5	≤5	≤4	IG-M8 ≤ 5	8 IG-M1 ≤5
Anchor size Installation to Char. Edge d	orque istance		er [-] [Nm]	M8 I ≤ 4	<u>≤ 4</u>	≤5 1	≤ 5 20 (2 h _{et})	≤ 4)	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co	orque istance nditions)	Tinst	er [-] [Nm]	M8 I ≤ 4	<u>≤ 4</u>	≤5 1	≤ 5 20 (2 h _{et})	≤4	≤ 5	≤ 5
	orque istance nditions) ge Distance	Tinst Cer. (Cer.ii)	er [-] [Nm] [mm]	M8 I ≤ 4	<u>≤ 4</u>	≤5 1 berpend	≤ 5 20 (2 h _{et}) licular to	≤ 4) the free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co	orque istance nditions) ge Distance c Spacing nditions)	Tinst Ccr. (Ccr.ti) Cmin	er [-] [Nm] [mm] [mm] 1) [mm]	M8 I ≤ 4	<u>≤ 4</u>	≤5 1 berpend	≤ 5 20 (2 het) licular to 50 600 (4 het) 20 (4 hef)	≤ 4) the free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co	orque istance nditions) ge Distance c Spacing nditions)	Tinst Ccr; (Ccr.ti) Cmin Scr. 11: (Scr.fi,	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm]	M8 I ≤ 4	<u>≤ 4</u>	≤5 1 berpend	≤ 5 20 (2 h _{et}) licular to 50 600 (4 h _{et})	≤ 4) the free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic	orque istance nditions) ge Distance c Spacing nditions) acing	Tinst Ccr; (Ccr,ii) Cmin Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi,	er [-] [Nm] [mm] [mm] 1) [mm] 1] [mm]	M8 I ≤ 4 (for shea	≤ 4 ar loads p	≤ 5 1 berpend 5 1	≤ 5 20 (2 het) licular to 50 600 (4 het) 20 (4 hef)	≤ 4) the free e	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp.	orque istance nditions) ge Distance : Spacing nditions) acing : Reducti	Tinst Ccr; (Ccr.fl) Cmin Scr, II; (Scr.fl, I Scr, L; (Scr,fl, Smin, II; Smin, I	er [-] [Nm] [mm] [mm] 1) [mm] 1] [mm]	M8 I ≤ 4 (for shea	≤ 4 ar loads p he edge	≤ 5 1 berpend 5 1	≤ 5 20 (2 het) licular to 50 i00 (4 het) 20 (4 het) 50	≤ 4) the free e	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35 :	orque istance nditions) ge Distance : Spacing nditions) acing : Reducti	Tinst Ccr; (Ccr.fl) Cmin Scr, II; (Scr.fl, I Scr, L; (Scr,fl, Smin, II; Smin, I	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm] 1 [mm] r single an	M8 I ≤ 4 (for sheat chors at t	≤ 4 ar loads p he edge S	≤ 5 1 perpend 5 1 Shear loa	≤ 5 20 (2 het) icular to 50 i00 (4 het) 20 (4 het) 50 ad	≤ 4) the free e)	≤5 dge:co	≤ 5 r = 500)
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35 :	orque istance nditions) ge Distance : Spacing nditions) acing : Reducti	Tinst Ccr; (Ccr.fl) Cmin Scr, II; (Scr.fl, I Scr, L; (Scr,fl, Smin, II; Smin, I	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm] 1 [mm] r single an	M8 I ≤ 4 (for shea	≤ 4 ar loads p he edge S	≤5 1 perpend 5 1 Shear los	≤ 5 20 (2 het) icular to 50 i00 (4 het) 20 (4 het) 50 ad	≤ 4) the free e	≤5 dge:co	≤ 5 r = 500)
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35 :	orque istance nditions) ge Distance c Spacing nditions) acing : Reducti	Tinst Ccr; (Cer.fi) Cmin Scr, II: (Scr,fi, Scr, ⊥; (Scr,fi, Smin, II: Smin, On factors fo	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm] 1 [mm] r single an	M8 I ≤ 4 (for shea chors at ti ular to the fr	≤ 4 ar loads p he edge S ree edge	≤5 1 berpend 5 1 Shear los	≤ 5 20 (2 het) icular to 50 i00 (4 het) 20 (4 het) 50 ad	≤ 4) the free e))	≤5 dge:co free ec c≥	≤ 5 r = 500)
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35 :	orque istance nditions) ge Distance c Spacing nditions) acing Reducti	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, L; (Scr,fi, Smin, II; Smin, on factors fo Cdedge, N	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm] 1 [mm] r single an	M8 I ≤ 4 (for sheat (for sheat I chors at tl I ular to the fr with c ≥	≤ 4 ar loads p he edge S ree edge αedge,	≤5 1 berpend 5 1 Shear lo:	≤ 5 20 (2 het) icular to 50 i00 (4 het) 20 (4 het) 50 ad	≤ 4) the free e)) allel to the	≤ 5 dge: c _e e free ec c ≥)	≤ 5 r = 500) dge αedge, V II
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35: Tension load	orque istance nditions) ge Distance c Spacing nditions) acing : Reducti i with c ≥ 50 120 : Factors	Tinst Ccr; (Cer.fl) Cmin Scr, II; (Scr,fl, Scr, II; Scr,fl, Smin, II; Smin, on factors fo Cledge, N 1,00 1,00 1,00	er [-] [Nm] [mm] [mm] [mm] [] [mm] [] [mm] r single an Perpendic	M8 I ≤ 4 (for sheat (for sheat (for sheat chors at the fire (for sheat ular to the fire (for sheat with c ≥ 50 500 500 er tension	≤ 4 ar loads p he edge S ree edge 0,45 1,00 load	≤ 5 1 berpend 5 1 Shear lo: 5 i	≤ 5 20 (2 het) licular to 50 600 (4 hef) 20 (4 hef) 50 ad Para	≤ 4) the free e) allel to the with 50 120	≤ 5 dgē: cœ e free ec c ≥) 0	≤ 5 r = 500) dge αedge, γ π 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35: Tension load	orque istance nditions) ge Distance c Spacing nditions) acing Reducti with c ≥ 50 120 Factors ion parallel to	Tinst Ccr; (Cer.fl) Scr, II; (Scr,fl, I) Scr, II; (Scr,fl, I) Srin, II; Smin, on factors fo Cledge, N 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	er [-] [Nm] [mm] [mm] [mm] [] [mm] [] [mm] r single an Perpendic	M8 I ≤ 4 (for sheat (for sheat (for sheat chors at the fire (for sheat ular to the fire (for sheat with c ≥ 50 500 500 er tension	≤ 4 ar loads p he edge S ree edge 0,45 1,00 load	≤ 5 1 berpend 5 3 Shear loo 5 5 0	≤ 5 20 (2 het) icular to 50 i00 (4 het) 50 ad Para endicular	≤ 4) the free e)) allel to the with 50 120 to hor. joi	≤ 5 dge: c _e e free ec c ≥) 0	≤ 5 r = 500) dge αedge, ∀ II 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35 : Tension load • Table C36 : Anchor posit	orque istance nditions) ge Distance c Spacing nditions) acing Reduction with $c \ge$ 50 120 Factors ion parallel to with $c \ge$	Tinst Ccr; (Cer.fi) Cmin Scr, II: (Ser.fi, I Scr, L; (Ser.fi, I Smin, II: Smin, on factors fo Cledge, N 1,00 1,00 1,00 bhor. joint with s ≥	er [-] [Nm] [mm] [mm]] [mm]] [] [mm]] [] [mm] [] r single an Perpendic [] roups unde [] [] [] [] [] [] [] [] [] [] [] [] []	M8 I ≤ 4 (for sheat (for sheat (for sheat chors at the fire (for sheat with c ≥ 50 500 500 er tension Anchors	≤ 4 ar loads p he edge S ree edge 0,45 1,00 load or positio	≤ 5 1 berpend 5 1 Shear loo 5 5 0	≤ 5 20 (2 het) licular to 50 i00 (4 hef) 20 (4 hef) 50 ad Para endicular c ≥	≤ 4 the free e)) allel to the with 50 120 to hor. joi with s ≥	≤ 5 dge: c _e e free ec c ≥) 0	≤ 5 $r = 500)$ dge $\alpha_{edge, V II}$ $1,00$ $1,00$ $\alpha_{g \perp, N}$
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C35: Tension load	brque istance nditions) ge Distance : Spacing nditions) acing : Reducti with $c \ge$ 50 120 : Factors ion parallel to with $c \ge$ 50	Tinst Ccr; (Cer.II) Cmin Scr, II: (Ser.II, Scr, L; (Ser.II, Smin, II: Smin, on factors fo 0,00 1,00 1,00 1,00 1,00 1,00 1,00 50	er [-] [Nm] [mm] [mm] 1) [mm] 1) [mm] 1 [mm] r single an Perpendic Perpendic	M8 I ≤ 4 (for sheat (for sheat (for sheat chors at the fire (for sheat with c ≥ 50 500 500 er tension Anchors	≤ 4 ar loads p he edge S ree edge 0,45 1,00 load	≤ 5 1 berpend 5 1 Shear loo 0 v ⊥ 5 0 0 0 0	≤ 5 20 (2 het) licular to 50 300 (4 her) 20 (4 her) 50 ad Para endicular c ≥	≤ 4 the free e allel to the with 50 to hor. joi with s \geq 50	≤ 5 dge: c _e e free ec c ≥) 0	≤ 5 r = 500) dge αedge, ∀ II 1,00 1,00
Anchor size nstallation to Char. Edge d under fire co Minimum Edg Characteristic under fire co Minimum Sp. Table C35: Tension load • Table C36: Anchor posit	orque istance nditions) ge Distance c Spacing nditions) acing Reduction with $c \ge$ 50 120 Factors ion parallel to with $c \ge$	Tinst Ccr; (Cer.fi) Cmin Scr, II: (Ser.fi, I Scr, L; (Ser.fi, I Smin, II: Smin, on factors fo Cledge, N 1,00 1,00 1,00 bhor. joint with s ≥	er [-] [Nm] [mm] [mm]] [mm]] [] [mm]] [] [mm] [] r single an Perpendic [] roups unde [] [] [] [] [] [] [] [] [] [] [] [] []	M8 I ≤ 4 (for sheat (for sheat (for sheat chors at the fir with c ≥ vith c ≥ 50 500 500 er tension Anchor 4 Anchor	≤ 4 ar loads p he edge S ree edge 0,45 1,00 load or positio	≤ 5 1 berpend 5 1 Shear loo 5 5 0	≤ 5 20 (2 het) licular to 50 300 (4 her) 20 (4 her) 50 ad Para endicular c ≥	≤ 4 the free e)) allel to the with 50 120 to hor. joi with s ≥	≤ 5 dge: c _e e free ec c ≥) 0	≤ 5 r = 500) dge αedge, V II 1,00 1,00

	Anchor pos		r groups		Contraction of the state		acition	nornandia	ular to hor. j	aint
Shear load	Michor pos	with c		# 1 T		urchor p	1	with $c \ge$	with s ≥	
perpendicular	Terrando and	50	2 with 8	i≥ α _{g ll} 0,5				50 sin c ≥	50 viiii s ≥	α _{g ±.} v ± 0,50
to the free		500	50	1,0				500	50	1,00
edge		500	500					500	250	2,00
Shear load		with c			_		- T	with c ≥	with s ≥	
parallel to the	1.00	50	50	i≥ αgii 2,0				50	50	α _{g±,V} // 1,30
free edge		120	500					120	250	2,00
Table C38:	Character	istic val	ues of ter	sion and	shear	load re	esistar	nces		
			CRE MINTE	AME 122 - 27				A Contraction of the second second	and s≥s _{cr}	
	æ	o					conditi			
	eev	Effecitve nchorage depth		d/d			-	w/d		d/d
	l si	fec	-	0/0			_	w/w		w/w (w/d)
Anchor size	Bertor size	Effecitve Anchorage depth	40°C/24°C	80°C/50°C	120°C/7	2°C 40°	°C/24°C	80°C/50°C	120°C/72°C	All temperatur ranges
	her [mm]	hat	her NBK,b = NBK,p 2) NF						2)	VRk,b ²⁾
				HK.D - INHR,P	>		[kN]	NAK,6 = NAK.	p	V HR.D
	_		ed mean c	ompressi	ve stren	ath f.		mm ² 1)		
M8 / M10/ IG-M6	SH 16	130	3,5	3,5	2,5		3,5	3,5	2,5	3,5
M12/M16/	01100	- 100	0.5	0.5			3,5	3,5	2,5	7,0
IG-M8 / IG-M10 ¹⁾ For lower comp with higher stre ²⁾ NRkb,c = NRkp,c	pressive streengths, the s	hown value	es are valid	without conv					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
 For lower com with higher street NRk.b.c = NRk.p.c 	pressive streengths, the s	ngths resis hown value VRk,c±acc 1ents	stances mus es are valid cording to Ar	t be multiplie without conv nex C 3	d by the version.	convers	sion fact	or according	g to Table C3	3. For stones
 For lower com with higher street NRk.b.c = NRk.p.c 	pressive stree engths, the s and V _{Rk,c II} = Displacen	ngths resis hown value VRk,c±acc nents hef	stances mus es are valid cording to Ar δN / N	t be multiplie vithout conv nex C 3	l ed by the version.	convers δN∞	sion facti δγ	or according	g to Table C3 õV0	3. For stones δV∞
 For lower comp with higher street NRKb.c = NRKp.c Table C39: 	pressive streengths, the s and V _{Rk,c II} = Displacen size	ngths resis hown value V _{Rk,c} ± acc nents hef [mm]	stances mus es are valid cording to Ar	t be multiplie vithout conv nex C 3	l ed by the version.	convers	sion facti δν [mr	or according	 g to Table C3 δνο [mm]	3. For stones δV∞ [mm]
 For lower comp with higher stre 2) NRKb.c = NRKp.c Table C39: Anchor M8 – M IG-M6 – 	pressive streengths, the s and Veikell = Displacen size 12 / M10	ngths resis hown value Vek,c±acc nents hef [mm] all	stances mus es are valid cording to Ar δN / N	t be multiplie vithout conv nex C 3	Led by the version. VO m]	convers δN∞	sion facti δν [mr 0	or according / / V n/kN] ,55 0] g to Table C3 δV0 [mm] 0,55*V _{Rk} / 3,5	3. For stones δγ∞ [mm] 5 1,5*δνο
 For lower com, with higher stre 2) NRk.b.c = NRk.p.c Table C39: Anchor M8 – M 	pressive streengths, the s and Veikell = Displacen size 12 / M10	ngths resis hown value V _{Rk,c} ± acc nents hef [mm]	stances mus es are valid cording to Ar δN / N [mm/kN]	t be multiplie without conv nex C 3 δι [m	l version. vo m]	convers δN∞ [mm]	sion facti δν [mr 0	or according / / V n/kN] ,55 0	 g to Table C3 δνο [mm]	3. For stones δγ∞ [mm] 5 1,5*δνο
 For lower comp with higher stre 2) NAR.b.c = NAK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 	pressive stre engths, the s and Verkell = Displacen size 12 / M10	ngths resis hown value VRk,c±acc nents [mm] all all	stances mus es are valid cording to Ar δN / N [mm/kN] 0,13	t be multipli without conv inex C 3 δt [m 0,13*N	 ed by the version. м) m] як / 3,5	δN∞ [mm] 2*δN0	sion facts δγ [mn 0 0	or according // V n/kN] ,55 0 ,31 0] g to Table C3 δV0 [mm] 0,55*V _{Rk} / 3,5	δV∞ [mm] 1,5*δvo
 For lower com, with higher stre 2) NAR.b.c = NAR.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 	Displacen Size 12 / M10 M10 M10 M10 M10 M10 M10 M10	ngths resis hown value VRk,c±acc nents hef [mm] all all istic value E	tances mus es are valid ording to Ar δN / N [mm/kN] 0,13 ues of ter ffective	t be multiplie without conv nex C 3 δr [m 0,13*N sion and	 ed by the version. м) m] як / 3,5	δN∞ [[mm]] 2*δN0	sion facto δγ [mn 0 0 0 0	or according // V n/kN] ,55 0 ,31 0	δvo [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5	δV∞ [mm] 1,5*δvo
 For lower comp with higher stre 2) NAR.b.c = NAK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 Table C40: 1 	Displacen Size 12 / M10 M10 M10 M10 M10 M10 M10 M10	ngths resis hown value VRk,c ± acc nents hef [mm] all all istic value ed ancho	tances mus es are valid cording to Ar δN / N [mm/kN] 0,13 ues of ter ffective orage depth	t be multiplie without conv nex C 3 δt [m 0,13*N sion and	 ed by the version. M] m] Rk / 3,5 shear	convers δN∞ [mm] 2*δN0 load re Cha	δγ [mr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or according / V n/kN] ,55 0 ,31 0 nces und stic Resista Nak,p,t = Va	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	3. For stones δγ∞ [mm] 1,5*8vo 0 1,5*8vo
 For lower comp with higher stre 2) NAR.b.c = NAK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 	Displacen Size 12 / M10 M10 M10 M10 M10 M10 M10 M10	ngths resis hown value VRk,c ± acc nents hef [mm] all all istic value ed ancho	tances mus es are valid cording to Ar δN / N [mm/kN] 0,13 ues of ter ffective orage depth her	t be multiplie without conv nex C 3 δt [m 0,13*N sion and	 ed by the version. м) m] як / 3,5	convers δN∞ [mm] 2*δN0 load re Cha	sion facts δγ [mr 0 0 esistai aracteris	or according / V n/kN] ,55 0 ,31 0 nces und stic Resista Nak,p,1 = Va	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5	3. For stones δγ∞ [mm] 1,5*δvo 1,5*δvo
 For lower com, with higher stre 2) NRK.b.c = NRK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 Table C40: 1 	Character	ngths resis hown value VRk,c ± acc nents hef [mm] all all istic value ed ancho	stances mus es are valid cording to Ar δN / N [mm/kN] 0,13 0,13 ues of ter ffective orage depth her [mm]	t be multiplie without conv nex C 3 δt [m 0,13*N sion and	 ed by the version. M] m] Rk / 3,5 shear	convers δN∞ [mm] 2*δN0 load re Cha	δγ [mr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or according / V n/kN] ,55 0 ,31 0 nces und stic Resista Nak,p,t = Va	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	3. For stones δV~ [mm] 1,5*δvo 05 1,5*δvo osure R120
 For lower com, with higher stre NAR.b.c = NAR.p.c Table C39: Anchor M8 – M IG-M6 – M16 Table C40: Anchor size M8 / M10 /IG-M6 	Character Perforat sleeve B SH 16	Ingths resis hown value VRK,c ± acc nents [mm] all all istic value call all all all	tances mus es are valid cording to Ar δN / N [mm/kN] 0,13 ues of ter ffective orage depth het [mm] 130	be multipli without conv nex C 3 δr [m 0,13*N sion and	 ed by the rersion. m] пк / 3,5 shear 330	convers δN∞ [mm] 2*δN0 load re Cha	sion facts δv [mr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or according (/ V n/kN] ,55 0 ,31 0 nces und stic Resista VRk,p,t = VR [kN]	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances ances ances ances ances ances ances ances ances ances	3. For stones δγ∞ [mm] 1,5*δνο 0 1,5*δνο osure
 For lower com, with higher stre NRkbc = NRkpc Table C39: Anchor M8 – M IG-M6 – M16 Table C40: Anchor size M8 / M10 /IG-M6 M12 / IG-M8 M16 / IG-M10 	Character Perforat sleeve S SH 16 SH 20 SH 20	Ingths resis hown value Vex.e ± acc nents hef [mm] all all istic value ed ancho	stances mus es are valid cording to Ar δN / N [mm/kN] 0,13 0,13 ues of ter ffective orage depth her [mm]	be multipli without conv nex C 3 δr [m 0,13*N sion and	 ed by the version. M] m] Rk / 3,5 shear	convers δN∞ [mm] 2*δN0 load re Cha	δγ [mr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or according (/ V n/kN] ,55 0 ,31 0 nces und stic Resista VRk,p,t = VR [kN]	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	3. For stones δV~ [mm] 1,5*δvo 05 1,5*δvo 05ure R120
 For lower com, with higher stre 2) NRK.b.c = NRK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 Table C40: 1 Anchor size M8 / M10 /IG-M8 M16 / IG-M10 	Character Perforat sleeve S SH 16 SH 20 SH 20	Ingths resis hown value Vex.e ± acc nents hef [mm] all all istic value ed ancho	tances mus es are valid cording to Ar δN / N [mm/kN] 0,13 0,13 ues of ter ffective orage depth her [mm] 130 ≥ 130	be multipli without conv nex C 3 δr [m 0,13*N sion and	 ed by the rersion. m] пк / 3,5 shear 330	convers δN∞ [mm] 2*δN0 load re Cha	sion facts δv [mr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	or according (/ V n/kN] ,55 0 ,31 0 nces und stic Resista VRk,p,t = VR [kN]	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances ances ances ances ances ances ances ances ances ances	3. For stones δV∞ [mm] 1,5*8vo 0 1,5*8vo 0 1,5*8vo 0 1,5*8vo 0 1,5*8vo 0 1,5*8vo 0 1,5*8vo
 For lower com, with higher stre 2) NRK.b.c = NRK.p.c Table C39: 1 Anchor M8 – M IG-M6 – M16 Table C40: 1 Anchor size M8 / M10 /IG-M8 M12 / IG-M8 	Character Perforat sleeve S SH 16 SH 20 Personation SH 20 Personation SH 20 SH 20 Personation SH 20 SH 20 SH 20 Personation SH 20 SH	Ingths resis hown value Vek.e ± acc nents hef [mm] all all istic value ed ancho	tances mus es are valid cording to Ar $\delta N / N$ [mm/kN] 0,13 0,13 ues of ter ffective orage depth her [mm] 130 \geq 130	be multipli without conv inex C 3 0,13*N 0,13*N sion and	ا ed by the version. m] هه / ۵,5 shear	convers δN⊷ [mm] 2*δN0 load re Cha N	sion facts δv [mr 0 0 0 esistar racteris Rk,b,t = f R60	or according (/ V n/kN] ,55 0 ,31 0 nces und stic Resista VRk,p,t = VR [kN]	δv0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances ances ances ances ances ances ances ances ances ances	3. For stones δV∞ [mm] 1,5*δvo 0 1,5*δvo 0 1,5*δvo 0 1,5*δvo 0 1,5*δvo 0 1,5*δvo 0 1,5*δvo 0 1,5*δvo

Table C41:	: Stone de	escripti	on							
Brick type				Solid cla	ay brick Mz-	1DF	1			
Density		p [kg/dn	n ³]	≥ 2,0			1			
Normalised r compressive		fo [N/m		≥ 20			1	-		
	factor for lowe	r compre	essive	(f _b / 20) ⁰	^{1,5} ≤ 1,0		1		-	
Code				EN 771-	1:2011+A1:	2015	1		-	
Producer (Co	ountry)				enerberger (A.V. (7 . V. (8)	1	~		
Brick dimens		[mm]			115 x 55		-			
Drilling meth		der ster a		Hammer	and the second sec					
Table C42:	Frank Street	ion para	ameter			-			-	
Anchor size	1	U p	[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation to	orque	Tinst	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Char. Edge d	and the second se	Ger	[mm]				pendicular te			
Minimum Ed		Cmin	[mm]		1.4. 4. 4.	outer pro	60	0	0-9	2.4/
in the second second		Scr. II	[mm]	1			240			
Characteristi	ic Spacing	Scr. 1	[mm]				130			
Minimum Sp	acing	Smin. II;	[mm]			-	65	_		
		Smin, 1		1	NO 10 17 1		27.53			
Table C43:	: Reduction	on facto	ors for a	single an	chors at t	he edge				
	Tension load			-2.5			shear load			-
			-	Perpendic	ular to the f	ree edge	10.000		o the free e	edge
	withc≥	Cledge, N			with c ≥	Cledge, \		1-1 1	withc≥	Cledge, V II
•	60	0,75			60	0,10		-	60	0,30
a second second	150	1,00			100	0,50		+	100	0,65
	180	1,00			240	1,00	ř I V		150	1,00
Table C44:	: Factors fo	or anch	or grou	ps under	r tension I	oad				
	nchor position						r position pe	rpendicul	ar to hor. in	pint
	with c ≥		ths≥	Clg II, N	a	- il	with c ≥	the second s	152	Clg⊥,N
	60		65	0.85		10	60		65	1.00
	150	_	65	1,15			150		35	1,20
	150		240	2,00			150		30	2,00
1	1			1			195			
	Eastara fr	- onch		ino undo	- aboar los					
Tabla C45				the second se				the state of the state of the		1.1.1
Table C45:	Anc			illel to hor.		And	hor position			
	- mic		hc≥	with s ≥	Clg II.V L	1			with s ≥	-α _{g⊥,V⊥}
Shear load	1 (65	0,40			0	65	0,30
Shear load perpendicula	1 (6	50		0.00		- 20	40	65	2.00
Shear load perpendicula to the free	1 (+ E	40	65	2,00					and the second sec
Shear load perpendicula to the free	1 (+ 6 2 2	40 40	65 240	2,00)	24	40	130	2,00
Shear load perpendicula to the free edge	1 (e e	40 40 hc≥	65 240 with s ≥	2,00 α _θ II.V II		24 with	40 IC≥ V	130 with s ≥	2,00 αg ⊥,V II
Shear load perpendicula to the free edge Shear load	ar 📔 🚥	With 6	40 40 hc≥ 60	65 240 with s ≥ 65	2,00 α _θ II,V II 1,75		24 with	40 IC≥ V 0	130 with s ≥ 65	2,00 α _{g⊥,V∥} 1,10
Shear load perpendicula to the free edge	ar 📔 🚥		40 40 hc≥	65 240 with s ≥	2,00 α _θ II.V II		24 with 6 15	40 IC≥ V	130 with s ≥	2,00 α _{g ⊥,V II}

 Injection system EJOT Multifix Vinylester / Sormat ITH Vinylester for masonry
 Annex C 15

 Performances solid clay brick 1DF Description of the stone, Installation parameters, Reduction- and Group factors
 Annex C 15

				Charao		ad res sistanc			and s ≥ s _{cr}			
						Use c	ondit	ion				
Anchor size	Perforated sleeve	Effecitve Anchorage depth		d/d				w/d w/w		d/d w/d w/w		
Anchor Size	cerforate	-	40°C/24°C	80°C/50°C	120°C/72°C	40°C/	/24°C	80°C/50°C	120°C/72°C	All temperature ranges		
	<u> </u>	h _{ef}	$N_{Rk,b} = N_{Rk,p}^{2}$						2) ,p	V _{Rk,b} ²⁾		
		[mm]	n] [kN]									
	Normalised mean compressive strength $f_b \ge 20 \text{ N/mm}^{2 \text{ 1}}$											
M8	-	80										
M10 / IG-M6	-	≥ 90	7,0	6,0	6,0	7,	0	6,0	6,0	8,0		
M12 / IG-M8	-	≥ 100										
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,	0	6,5	6,5	12,0		
M8	SH 12	80										
M8 / M10/ IG-M6	SH 16		7,0	6,0	6,0	7,	0	6,0	6,0	8,0		
M12 / IG-M8	SH 20	≥ 85	, -	-,-	-,-	.,			-,-	-,-		
M16 / IG-M10	SH 20	≥ 85	8,0	6,5	6,5	8,	0	6,5	6,5	12,0		
	splacem			δι	10	δN∞	δι	//V	δνο	δ∨∞		
Anchor siz	e	[mm]	[mm/kN]	[m	m] [mm]		n/kN]	[mm]	[mm]		
M8 – M12 IG-M6 – M		all	0,1	0,1*NF		*δN0			0,3*V _{Rk} / 3,5	1,5*δvo		
M16		all	,		, _		(D,1	0,1*V _{Rk} /3,5	1,5*δvo		
Injection system masonry		Iltifix Viny	/lester / So	ormat ITH	Vinylester	for		_	Annex C			

Brick type Density Normalised m compressive s Conversion fa strengths Code	aan	11 11 22	00.	no onay	brick Mz-						
Normalised mo compressive s Conversion fai strengths	aan	[kg/dm ³]	≥ 2	0					-		
compressive s Conversion fa strengths	on i i on i			1		-					
strengths		[N/mm ²]	≥2	8							
	ctor for lower o	compressive	16	(28)0,5	<10			100			
Code			1000							1	
					:2011+A1:2			6.			
Producer (Cou Brick dimensio					erberger (E	DE)	-	× *	1		
Drilling method		nm]		mmer	15 x 113		-		× .		
Arrest Property	Turner the second			miner	Juning		1	_			_
Table C49:	Installation	n paramete	r		-		-				
Anchor size				[-]	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Installation tor		Tinst	100	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Char. Edge dis		Cer; (Cer,fi)		[mm]	line also	or load		150 (2 her		daore	2401
under fire con Minimum Edge				[mm]	(for she	ar 10a0	s perper	ndicular to 50	ule free e	oge: Cor	= 240)
Characteristic		Cotin Ser. II: (Ser.fi, II		[mm]	_		_	240 (4 hef			_
under fire con		Scr. 11; (Scr.fi, 1) Scr. 1.; (Scr.fi, 1)		[mm]	1			240 (4 het			
Minimum Spa		Smin, II; Smin, J	2	[mm]				50			
					The boll of the		3.				
Table C50:		factors for		-			-				
Te	ension load		near l	oad pe	rpendicula			Shear lo	ad paral	State 1 1 1	
		Cledge, N	-	1	with c ≥		je, V⊥		with	C≥	Cledge, V II
•	501)	1,00			50		20		50		1,00
	1501)	1,00			125 240		50		- 15	~	4.00
1) 611	180	1,00	in al cost	de se de set		1. 1,	00		15	0	1,00
and the second second	ons, except for h					100					
Table C51:	and the second se	r anchor gr			er tensio				_		
And	hor position pa	and shared the state of the sta	joint			Ancl		ion perper			nt
	with c ≥	with s ≥	-	Olg II, N				hc≥	with s ≥		Qg L, N
1	50 ¹⁾	50	-	1,50		-		01)	50		0,80
	1501)	240		2,00		•		501)	240		2,00
	1802)	60		1,00			18	30 ²⁾	60		1,00
	1802)	240		1,55		202	18	302)	120	1.1	2,00
	240 ²⁾	240		2,00					1.00		4196
	ons, except for h										
	blication with hel										
Table C52:	Factors fo	r anchor gr	roup	s und	er shear l						
	Ancho	or position pai			joint	A	nchor p	osition per			joint
Shear load		with c ≥		ls≥	αg II,V ±			with c ≥	with		αg⊥,V⊥
perpendicular	11	50		50	0,40	111	110	50	50		0,20
to the free		240	5	50	1,20			240	50		0,60
edge		240	2	40	2,00	1		240	12		1,00
		withc≥	with	15≥	diaman.	-		vith c ≥	24 with		2,00
Shear load	T.	50 with c ≥		50	α ₉ ιι,ν ιι 1,20	-	140	with c ≥ 50	50		α _{g⊥,V II} 1,00
parallel to the				5 e	1	1		50	12		1,00
free edge		150	2	40	2,00		10.00	150	24		2,00
	tem EJOT Mu	<u> </u>	-	_		1		1.00			-,

				Charao	cteristic Res	sistances w	vith c ≥ c _{cr}	and $s \ge s_{cr}$		
	0					Use condit	ion			
Analasy size	d sleeve	Effecitve Anchorage depth	byp d/d				w/d w/w			
Anchor size	Perforated sleeve	Α ^μ Π	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	All temperature ranges	
		h _{ef}	Ν	$I_{Rk,b} = N_{Rk,p}$	2)		$N_{Rk,b} = N_{Rk}$	2)	V _{Rk,b} ²⁾	
		[mm]			•	[kN]		η μ		
		Normalis	ed mean c	ompressi	ve strength		mm ^{2 1)}			
M8	-	80						7.5	0.5	
M10 / IG-M6	-	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5	
M12 / IG-M8	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12	
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12 ³⁾	
M10 / M12 / IG-M6 / IG-M8	-	200	11,5	11,5	10,0	6,0	6,0	5,0	8,0	
M16 / IG-M10	-	200	11,5	11,5	10,0	6,0	6,0	5,0	12,0	
M8	SH 12	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5	
M8 / M10/ IG-M6	SH 16	≥ 85	,					-		
		≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0	
 with higher stren 2) N_{Rk,b,c} = N_{Rk,p,c} a 3) Valid for all ston 	ngths, the s and V _{Rk,c II} = e strengths	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min.	9,0 tances must es are valid v ording to An	9,0 be multiplie vithout conv	7,5 ed by the cor	9,0	9,0	7,5	12,0 ³⁾	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D	SH 20 ressive stre ogths, the s nd V _{Rk,c II} = e strengths isplacen	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents	9,0 tances must es are valid v ording to An 10 N/mm ²	9,0 be multiplie vithout conv nex C 3	7,5 ed by the cor version.	9,0 oversion fact	9,0 or accordir	7,5 g to Table C4	12,0 ³⁾ 8. For stones	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston	SH 20 ressive stre ogths, the s nd V _{Rk,c II} = e strengths isplacen	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents	9,0 tances must es are valid v ording to An 10 N/mm ² δN / N	9,0 be multiplie vithout conv nex C 3	7,5 ed by the cor version.	9,0 nversion fact δN∞ δι	9,0 or accordir / / V	7,5 g to Table C4 δV0	12,0 ³⁾ 8. For stones δ∨∞	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1	SH 20 essive stre gths, the s nd V _{Rk,c II} = e strengths isplacen ize	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm]	9,0 tances musi es are valid v ording to An 10 N/mm ² <u> </u>	9,0 : be multiplie vithout conv nex C 3 δt [m	7,5 ed by the corversion. version. N0 [r]	9,0 iversion fact δN∞ δ\ nm] [mi	9,0 or accordir / / V n/kN]	7,5 g to Table C4 δνο [mm]	12,0 ³⁾ 8. For stones δ∨∞ [mm]	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – N	SH 20 essive stre gths, the s nd V _{Rk,c II} = e strengths isplacen ize	≥ 85 ngths resis hown value V _{Rk,c} ⊥acc with min. • nents hef [mm] all	9,0 tances must es are valid v ording to An 10 N/mm ² δN / N	9,0 be multiplie vithout conv nex C 3	7,5 ed by the corversion. version. N0 8 m] [r	9,0 iversion fact δN∞ δ\ nm] [mi *δN0 (9,0 or accordir / / V m/kN] 0,3	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – N M16	SH 20 ressive stre ogths, the s nd V _{Rk,c II} = e strengths isplacen ize 2 / /10	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. T nents hef [mm] all all	9,0 tances musi ss are valid v ording to An 10 N/mm ² δN / N [mm/kN] 0,1	9,0 be multiplie vithout conv nex C 3 0,1*NF	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2	9,0 iversion fact δ№ δ\ nm] [mr *δN0 (9,0 or accordir / / V m/kN] 0,3 0,1	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δV0 1,5*δV0	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – N M16	SH 20 ressive stre ogths, the s nd V _{Rk,c II} = e strengths isplacen ize 2 / /10	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi ss are valid v ording to An 10 N/mm ² δN / N [mm/kN] 0,1	9,0 be multiplie vithout conv nex C 3 0,1*NF	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2	9,0 iversion fact δ№ δ\ nm] [mr *δN0 (9,0 or accordir //V n/kN] 0,3 0,1 nces und	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δV0 1,5*δV0	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – N M16 Table C55: C	SH 20 ressive stre igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- tances musi- sare valid vording to An tording to An 10 N/mm² δN / N [mm/kN] 0,1 ues of ten Effecitive orage dept	9,0 be multiplie vithout conv nex C 3 0,1*N _F sion and h	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2 I shear loa	9,0 iversion fact δN∞ δ\ nm] [mi *δN0 0 id resista Character N _{Rk,b,fi} =	9,0 or accordir //V m/kN] 0,3 0,1 nces und istic Resis N _{Bk,p,fi} = N	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances (Rk,b,fi	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 1,5*δvo	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – N M16	SH 20 ressive stre igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- tances musi- sare valid vording to An tording to An 10 N/mm² δN / N [mm/kN] 0,1 ues of ten Effective orage dept hef	9,0 be multiplie vithout conv nex C 3 0,1*N _F sion and h	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2	9,0 iversion fact δN∞ δN nm] [mi *δN0 0 ad resista Character	9,0 or accordir / / V m/kN] 0,3 0,1 nces und istic Resis N _{Rk,p,fi} = V	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δV0	
M16 / IG-M10 1) For lower compr with higher strer 2) N _{Rk,b,c} = N _{Rk,p,c} a 3) Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size	SH 20 ressive stre igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances must sare valid v ording to An 10 N/mm ² δ_N / N [mm/kN] 0,1 ues of ten Effecitve orage dept hef [mm]	9,0 be multiplie vithout conv nex C 3 0,1*N _F sion and h	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2 I shear loa	9,0 iversion fact δN∞ δ\ nm] [mi *δN0 0 id resista Character N _{Rk,b,fi} =	9,0 or accordir //V m/kN] 0,3 0,1 nces und istic Resis N _{Bk,p,fi} = N	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances (Rk,b,fi	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 1,5*δvo osure	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8	SH 20 ressive stre igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances must sare valid v ording to An 10 N/mm ² δ_N / N [mm/kN] 0,1 Ues of ten Effecitve orage dept hef [mm] 80	9,0 be multiplie vithout conv nex C 3 [m 0,1*N _F sion and h F	7,5 ed by the corversion. version. N0 8 m] [r qk / 3,5 2 I shear loa R30	9,0 iversion fact δN∞ δ\ nm] [mi *δN0 0 id resista Character N _{Rk,b,fi} = R60	9,0 or accordir //V m/kN] 0,3 0,1 nces und istic Resis N _{Rk.p.fi} = N [kN]	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances (Rk,b,fi R90	12,0 ³⁾ 8. For stones [mm] 1,5*δvo 1,5*δvo Osure R120	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size	SH 20 ressive stre igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /110 haracter Perforate sleeve	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances must sare valid v ording to An 10 N/mm ² δ_N / N [mm/kN] 0,1 ues of ten Effecitve orage dept hef [mm]	9,0 be multiplie vithout conv nex C 3 [m 0,1*N _F sion and h F	7,5 ed by the corversion. version. N0 8 m] [r Rk / 3,5 2 I shear loa	9,0 iversion fact δN∞ δ\ nm] [mi *δN0 0 id resista Character N _{Rk,b,fi} =	9,0 or accordir //V m/kN] 0,3 0,1 nces und istic Resis N _{Rk.p.fi} = N [kN]	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances (Rk,b,fi	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 1,5*δvo osure	
M16 / IG-M10 1) For lower compr with higher strer 2) N _{Rk,b,c} = N _{Rk,p,c} a 3) Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10	SH 20 ressive stre Igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve - - -	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances must sare valid v ording to An 10 N/mm² δ_N / N [mm/kN] 0,1 ues of ten effecitive orage dept hef [mm] 80 ≥ 90 ≥ 100	9,0 : be multiplic vithout conv nex C 3 0,1*N⊧ sion and h 0	7,5 ed by the corversion. version. № <td>9,0 iversion fact δN∞ δN nm] [mi] *δN0 0 ad resista 0 Character NRk,b,fi = R60 0 0,44 0,44</td> <td>9,0 or accordir //V m/kN] 0,3 0,1 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4</td> <td>7,5 g to Table C4 δV0 [mm] 0,3*V_{Rk} / 3,5 0,1*V_{Rk} / 3,5 der fire exp tances /_{Rk,b,fi} R90 0,36</td> <td>12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 1,5*δvo Osure R120</td>	9,0 iversion fact δN∞ δN nm] [mi] *δN0 0 ad resista 0 Character NRk,b,fi = R60 0 0,44 0,44	9,0 or accordir //V m/kN] 0,3 0,1 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances / _{Rk,b,fi} R90 0,36	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 1,5*δvo Osure R120	
M16 / IG-M10 1) For lower compr with higher strer 2) N _{Rk,b,c} = N _{Rk,p,c} a 3) Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 M8	SH 20 ressive stre igths, the s ind V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve - -	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- sare valid vording to An 10 N/mm² δ_N / N [mm/kN] 0,1 ues of ten effecitive orage dept hef [mm] 80 ≥ 90 ≥ 100 80	9,0 : be multiplic vithout conv nex C 3 0,1*N⊧ sion and h 	7,5 ed by the corversion. version. N0 8 m] [r ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	9,0 iversion fact δN∞ δN nm] [mi *δN0 0 ad resista Character NRk,b,fi = R60 0,44 0,26	9,0 or accordir / / V m/kN] 0,3 0,1 0,3 0,1 0,3 0,1 0,3 0,1 (kN]	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances (Rk,b,fi) R90 0,36 0,15	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo osure R120 0,33 0,10	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 M8 M8 / M10 / IG-	SH 20 ressive stre Igths, the s and V _{Rk,c II} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve - - -	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- sare valid vording to An 10 N/mm² δ_N / N [mm/kN] 0,1 ues of ten effecitive orage dept hef [mm] 80 ≥ 90 ≥ 100 80 ≥ 100 80 ≥ 85	9,0 : be multiplie vithout conv nex C 3 0,1*N⊧ sion and h P 0 0 0 0 0 0 0 0 0 0 0 0 0	7,5 ed by the corversion. version. N0 8 m] [r ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	9,0 iversion fact δN∞ δN nm] [mi *δN0 0 ad resista Character N _{Rk,b,fi} = R60 0,44 0,26 0,26	9,0 or accordir / / V m/kN] 0,3 0,1 0,1 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances / _{Rk,b,fi} R90 0,36 0,15	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 0sure R120 0,33 0,10 0,10	
M16 / IG-M10 1) For lower compr with higher strer 2) N _{Rk,b,c} = N _{Rk,p,c} a 3) Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 M8 M8 / M10 / IG-M6 M8 / M10 / IG-M6	SH 20 essive stre agths, the s and V _{Rk,cII} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve - - - - SH 12 SH 16	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- sare valid vording to An 10 N/mm² δ_N / N [mm/kN] 0,1 ues of ten effecitive orage dept hef [mm] 80 ≥ 90 ≥ 100 80 ≥ 100 80 ≥ 100 80 ≥ 100 80 ≥ 130	9,0 : be multiplic vithout conv nex C 3 0,1*N⊧ sion and h F 0 0 0 0 0 0 0 0 0 0 0 0 0	7,5 ed by the corversion. version. N0 8 m] [r ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	9,0 iversion fact δN∞ δ\ nm] [mi] *δN0 0 ad resista Character NRk,b,fi = R60 0,44 0,26 0,26 0,74	9,0 or accordir / / V m/kN] 0,3 0,1 0,1 0,3 0,1 0,1 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances / _{Rk,b,fi} R90 0,36 0,15 0,15 0,57	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 0,15*8vo 0,33 0,10 0,10 0,49	
M16 / IG-M10 1) For lower compr with higher strer 2) N _{Rk,b,c} = N _{Rk,p,c} a 3) Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 M8 M8 / M10 / IG-	SH 20 essive stre agths, the s and V _{Rk,cII} = e strengths isplacen ize 2 / /110 haracter Perforate sleeve - - - - SH 12	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value	9,0 tances musi- sare valid vording to An 10 N/mm² δ_N / N [mm/kN] 0,1 ues of ten effecitive orage dept hef [mm] 80 ≥ 90 ≥ 100 80 ≥ 100 80 ≥ 85	9,0 : be multiplic vithout conv nex C 3 0,1*N⊧ ision and h 	7,5 ed by the corversion. version. N0 8 m] [r ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	9,0 iversion fact δN∞ δN nm] [mi *δN0 0 ad resista Character N _{Rk,b,fi} = R60 0,44 0,26 0,26	9,0 or accordir //V m/kN] 0,3 0,1 0,1 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances / _{Rk,b,fi} R90 0,36 0,15	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvc 0,15*δvc 0,33 0,10 0,10	
M16 / IG-M10 ¹⁾ For lower compr with higher strer ²⁾ N _{Rk,b,c} = N _{Rk,p,c} a ³⁾ Valid for all ston Table C54: D Anchor si M8 – M1 IG-M6 – M M16 Table C55: C Anchor size M8 M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 M8 M8 / M10 / IG- M6 M12 / M16 /	SH 20 essive stre agths, the s and V _{Rk,cII} = e strengths isplacen ize 2 / /10 haracter Perforate sleeve - - - SH 12 SH 16 SH 20	≥ 85 ngths resis nown value V _{Rk,c} ⊥acc with min. nents hef [mm] all all istic value d Anch	9,0 tances musi- es are valid wording to An 10 N/mm² δ_N / N [mm/kN] 0,1 Ues of ten effective orage dept hef [mm] 80 ≥ 90 ≥ 100 ≥ 100 ≥ 85 130 ≥ 85 ≥ 130	9,0 be multiplie vithout conv nex C 3 [m] 0,1*NF Ision and h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,5 ed by the corversion. version. vm] [r ak / 3,5 2 I shear loa 330 9,51 9,36 9,36 9,92 9,36 9,92	9,0 iversion fact δN∞ δN nm] [mi] *δN0 0 ad resista 0 Character NRk.b.fi R60 0,26 0,26 0,74 0,26 0,74 0,26 0,74	9,0 or accordir //V m/kN] 0,3 0,1 0,1 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	7,5 g to Table C4 δV0 [mm] 0,3*V _{Rk} / 3,5 0,1*V _{Rk} / 3,5 der fire exp tances / _{Rk,b,fi} R90 0,36 0,15 0,15 0,15 0,15 0,15	12,0 ³⁾ 8. For stones δV∞ [mm] 1,5*δvo 0,15*δvo 0,33 0,10 0,49 0,10 0,10 0,10	

A.V.0.	Stone de	escription	Hollow cla	av briek		1				
Brick type			HONOW CI						-	
Density		p [kg/dm ³]	≥ 1,25				and the	and a set	C. Sin	
Normalised r		fb [N/mm ²]	≥ 20				112	1225	milli	
compressive	strengnt	and the second second				-				
strengths	actor for lower	r compressive	(f _b / 20) ^{0,5}	≤ 1,0						
Code			EN 771-1	:2011+A1	:2015	-				
Producer (Co	ountry)		e.g. Wien	erberger	(DE)		- 11			
Brick dimens	ions	[mm]	300 x 240) x 249				a state of the		
Drilling meth	od		Rotary dr	illing			_			
	0 	28	13 14	300		L State				
		L'UNITED IN	eles -		_					
		on paramete	[-]	M8	M10	M12	M16	IG-M6	IG-M8	
Anchor size Installation to	orque	on paramete		M8 ≤ 5	M10 ≤ 10	≤ 10	≤ 10	≤5	IG-M8 ≤ 5	IG-M10 ≤ 10
Anchor size Installation to Char. Edge d	orque istance		[-] [Nm]	≤5	≤ 10	≤ 10	≤ 10 120 (2 he	≤ 5)	≤5	≤ 10
Anchor size Installation to Char. Edge d (under fire co	orque istance nditions)	Tinst	[-] [Nm]	≤5	≤ 10	≤ 10	≤ 10 120 (2 he	≤5	≤5	≤ 10
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic	orque istance nditions) ge Distance s Spacing	Tinst Ccr; (Ccr,fi)	[-] (Nm] [mm]	≤5	≤ 10	≤ 10 s perpen	≤ 10 120 (2 he dicular to	≤ 5) the free e	≤5	≤ 10
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic	orque istance nditions) ge Distance s Spacing	Tinst Ccr; (Ccr,ti) Cmin	[-] [Nm] [mm] [mm]	≤5	≤ 10	≤ 10 s perpen	≤ 10 120 (2 h _e dicular to 50	≤ 5)) the free e	≤5	≤ 10
Table C57: Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp.	orque istance nditions) ge Distance c Spacing nditions)	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti,	[-] [Nm] [mm] [mm] ⊥) [mm]	≤5	≤ 10	≤ 10 s perpen	≤ 10 120 (2 he dicular to 50 300 (4 he	≤ 5)) the free e	≤5	≤ 10
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co	orque istance nditions) ge Distance c Spacing nditions) acing	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi,	[-] [Nm] [mm] [mm] []) [mm] []) [mm] [] (] (mm]	≤ 5 (for sh	≤ 10 lear load	≤ 10 s perpen	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he	≤ 5)) the free e	≤5	
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing Reductic	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti, Scr, ⊥; (Scr,ti, Smin, II; Smin,	[-] [Nm] [mm] [mm] ⊥ [mm] ⊥ [mm] ⊥ [mm] ur single an	≤5 (for sh	≤ 10 ear load t the ed	≤ 10 s perpen ge Shear	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50	≤ 5)) the free e ())	≤ 5 edge: c _{cr} =	≤ 10 = 300)
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing Reductic Fension load	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, ±; (Scr,fi, Smin, II; Smin, On factors fo	[-] [Nm] [mm] [mm] []) [mm] []) [mm] [] (] (mm]	≤ 5 (for sh echors al	≤ 10 lear load t the ed e free ed	≤ 10 s perpen ge Shear Ige	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50	≤ 5 the free e) rallel to the	≤ 5 edge: c _{cr} =	≤ 10 = 300) ge
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing c Reductic rension load with c ≥	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi, Smin, II; Smin, On factors fo Ωedge, N	[-] [Nm] [mm] [mm] ⊥ [mm] ⊥ [mm] ⊥ [mm] ur single an	≤ 5 (for sh chors at cular to the with c	≤ 10 tear load t the ed e free ed ≥ αed	≤ 10 s perpen ge Shear lge	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50	≤ 5 the free e) rallel to the with	≤ 5 edge: $c_{cr} =$ e free ed	≤ 10 = 300) ge αedge, V II
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing Reductic Fension load	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi, Smin, II; Smin, on factors fo αedge, N 1,00	[-] [Nm] [mm] [mm] ⊥ [mm] ⊥ [mm] ⊥ [mm] ur single an	≤ 5 (for sh echors at sular to the with c : 50	≤ 10 tear load t the ed e free ed ≥ αee 0	≤ 10 s perpen ge Shear lge Jge. V⊥ 0,20	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50	≤ 5 the free e) rallel to the with 5	≤ 5 edge: $c_{cr} =$ e free ed	≤ 10 = 300) ge α _{edge} , ∨ II 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing Reduction Fension load with c ≥ 50 120	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, II; (Scr,fi, Smin, II; Smin, On factors fo αedge, N 1,00 1,00	[-] [Nm] [mm] [mm] [] [mm] [] [mm] [] [mm] [] r single an Perpendic	≤ 5 (for sh chors at sular to the with c 50 300	≤ 10 ear load t the ed e free ed ≥ α _{ed} 0 1	≤ 10 s perpen ge Shear lge	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50	≤ 5 the free e) rallel to the with 5	≤ 5 edge: $c_{cr} =$ e free ed i c \geq 0	≤ 10 = 300) ge αedge, V II
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing : Reduction Fension load with c ≥ 50 120 : Factors fo	Tinst Ccr; (Ccr,fi) Cmin Scr, II; (Scr,fi, Scr, II; (Scr,fi, Smin, II; Smin, On factors fo αedge, N 1,00 1,00 1,00	[-] [Nm] [mm] [mm] [] [] [mm] [] [] [mm] [] [] [mm] [] [] [mm] [] [] [] [mm] [] [] [] [mm] [≤ 5 (for sh chors at sular to the with c 50 300	≤ 10 ear load t the ed e free ed ≥ α _{ec} 0 1 n load	≤ 10 s perpen ge Shear lge ,20 ,00	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50 load	≤ 5 i) the free e i) i) rallel to the 5 12	≤ 5 edge: $c_{cr} =$ e free ed $1 c \geq 10$ 20	≤ 10 = 300) ge αedge,∨II 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing c Reduction rension load with c ≥ 50 120 c Factors for nchor position	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti, Smin, II; Smin, on factors fo αedge, N 1,00 1,00 1,00 parallel to hor	[-] [Nm] [mm] [mm] []) [mm] []] [mm] []] [mm] []] [mm] []] [mm] []] [mm] []] [mm] [[mm] []] [mm] []] [mm] [[mm] []] [mm] [[mm] []] [mm] [[mm] []] [mm] [[mm] [[mm] []] [mm] [[mm] [[mm] []] [mm] [[mm]	≤ 5 (for sh chors at sular to the with c : 50 300 r tensior	≤ 10 ear load t the ed e free ed ≥ α _{ec} 0 1 n load	≤ 10 s perpen ge lge lge.v⊥ ,00 shor posit	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50 load Pa	≤ 5 the free e $\frac{1}{2}$ rallel to the $\frac{1}{2}$ with 5 radicular to	≤ 5 edge: $c_{cr} =$ e free ed i $c \geq$ 0 20 o hor. join	≤ 10 = 300) ge C(edge, ∨ II 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 :	orque istance nditions) ge Distance c Spacing nditions) acing : Reduction Fension load with c ≥ 50 120 : Factors fo	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti, Scr, II; (Scr,ti, Smin, II; Smin, on factors fo αedge, N 1,00 1,00 1,00 parallel to hor with s ≥	[-] [Nm] [mm] [mm] μ) [mm] μ) [mm] μ [mm] r single an Perpendic	≤ 5 (for sh chors at sular to the with c : 50 300 r tensior	≤ 10 tear load t the ed e free ed ≥ αed 0 1 n load Anc	≤ 10 <u>s perpen</u> <u>s perpendent s perpendent s</u>	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50 load	≤ 5 i) the free e i) i) rallel to the 5 12	≤ 5 edge: $c_{cr} =$ e free ed i $c \geq$ 0 20 o hor. join	≤ 10 = 300) ge αedge, V II 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 : Table C58: Ar	orque istance nditions) ge Distance c Spacing nditions) acing Reductic Fension load with $c \ge$ 50 120 Factors fo nchor position with $c \ge$	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti, Smin, II; Smin, on factors fo αedge, N 1,00 1,00 1,00 parallel to hor	[-] [Nm] [mm] [mm] []) [mm] []] [mm] []] [mm] []] [mm] []] [mm] []] [mm] []] [mm] [[mm] []] [mm] []] [mm] [[mm] []] [mm] [[mm] []] [mm] [[mm] []] [mm] [[mm] [[mm] []] [mm] [[mm] [[mm] []] [mm] [[mm]	≤ 5 (for sh chors at with c 50 300 r tensior	≤ 10 ear load t the ed e free ed ≥ α _{ed} 0 1 n load Anc	≤ 10 s perpen ge Shear ge 0,20 ,00 bor posit	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50 load Pa tion perpendent th c ≥	≤ 5)) the free e () () () () () () () () () () () () ()	≤ 5 edge: $c_{cr} =$ e free ed i $c \geq$ 0 20 o hor. join	≤ 10 = 300) ge C(edge, V II 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp. Table C58 : Table C59 : An	orque istance nditions) ge Distance c Spacing nditions) acing E Reduction Fension load with $c \ge$ 50 120 E Factors for nchor position with $c \ge$ 50 120	Tinst Ccr; (Ccr,ti) Cmin Scr, II; (Scr,ti, Smin, II; Smin, On factors fo Ωdedge, N 1,00 1,00 parallel to hor with s ≥ 50	$[-] \\ [Nm] \\ [mm] \\ [mm] \\ [mm] \\ [mm] \\ 1] [mm] \\ 1$	≤ 5 (for sh echors at sular to the with c : 50 300 r tension	≤ 10 ear load t the ed e free ed ≥ α _{ec} 0 1 n load Anc	≤ 10 <u>s perpen</u> <u>s perpendent s perpendent </u>	≤ 10 120 (2 he dicular to 50 300 (4 he 250 (4 he 50 load Pa tion perpendent th c ≥ 50	$ \leq 5$)) the free e () () () () () () () () () () () () ()	≤ 5 edge: $c_{cr} =$ e free ed i $c \geq$ 0 20 o hor. join	$\frac{1}{5} \frac{10}{1,00}$

•	with c 50 300 300 1 with c 50 120	50 50 300 ≥ with s 50	$\begin{array}{c c} s \ge & \alpha_{g,0} \\ & 0, z \\ & 1, 4 \\ 0 & 2, 0 \\ s \ge & \alpha_{g,0} \\ & 1, k \\ 0 & 2, 0 \\ \end{array}$	80 10 20 35 20 shear	load re	sista	with c ≥ 50 300 300 with c ≥ 50 120 nces ifth c ≥ c _{cr}	endicular to k with s ≥ 50 250 with s ≥ 50 250 250	$\begin{array}{c} \alpha_{g \perp, V \perp} \\ 0,20 \\ 1,00 \\ 2,00 \\ \alpha_{g \perp, V \parallel} \\ 1,00 \\ 2,00 \end{array}$	
haracter	50 300 300 with c 50 120	50 50 300 ≥ with s 50 300	0,5 1,4 0 2,0 5≥ α _θ π 1,8 0 2,0 1,8 0 2,0 0 2,	80 10 20 35 20 shear	Resistar	ices w	50 300 300 with c ≥ 50 120 mces ith c ≥ c _{cr}	50 50 250 with s ≥ 50 250	0,20 1,00 2,00 α _{g±,V1} 1,00	
haracter	300 300 with c 50 120	50 300 ≥ with s 50 300	1,4 2,0 5 ≥ α _θ π 1,8 0 2,0 0 2,0 0 2,0 0 Charac	10 00 35 00 shear	Resistar	ices w	300 300 with c ≥ 50 120 nces ith c ≥ c _{cr}	50 250 with s ≥ 50 250	1,00 2,00 α _{g±.} ν ₁₁ 1,00	
haracter	300 with c 50 120	≥ with s 50 300	2,0 α 1,8 2,0 1,8 2,0 chain 1,8 Charae	00 × II 35 00 shear	Resistar	ices w	300 with c ≥ 50 120 nces rith c ≥ c _{cr}	250 with s ≥ 50 250	2,00 α _{g±} ,v _{ii} 1,00	
haracter	with c 50 120	≥ with s 50 300	5 2 α _θ 1,8 1,8 0 2,0 Charad	× 35 00 shear	Resistar	ices w	with $c \ge 50$ 120 nces rith $c \ge c_{cr}$	with s ≥ 50 250	α _{g ±.} ν ⊪ 1,00	
haracter	50 120 ristic val	50 300	1,8 2,0 nsion and Charad	35 00 shear	Resistar	ices w	50 120 nces /ith c ≥ c _{cr}	50 250	1,00	
haracter	120 ristic val	300	a 2,0 Asion and Charad	oo shear	Resistar	ices w	120 nces rith c ≥ c _{cr}	250		
		ues of ter	nsion and Charad	shear	Resistar	ices w	with $c \ge c_{cr}$	and s ≥ s _{cr}		
			Charao		Resistar	ices w	with $c \ge c_{cr}$	and s ≥ s _{cr}		
Perforated sleeve	Effective Anchorage depth							CI		
Perforated sleeve	Effective Anchorage depth		d/d			0011011				
Perforated slee	Effectiv Anchora depth		d/d						d/d	
Perforated s	Effe Anch de						w/d w/w		w/d	
Periorati	-4			·		_	VV/ VV		w/w	
ď.		40°C/24°C	80°C/50°C	120°C/7:	2°C 40°C)/24°C	80°C/50°C	120°C/72°C	All temperatur ranges	
	hei	N	NRK,5 = NRK,F	5)		1	NRK,b = NRK	2)	VRk,b ²⁾	
	[mm]		o tatas o to to tataja			[kN]		P1	V HED	
	Normalis	ed mean c	ompressi	ve stren	gth f _b ≥	20 N/	mm ^{2 †)}			
SH 12	80		to be at	1.00						
SH 16	≥ 85	2,5	2,5	2,0	2	2,5	2,5	2,0	8,0	
SH 20	≥ 85	5,0	5,0	4,5	- 6	5,0	5,0	4,5	8,0	
SH 20	≥ 85	5,0	5,0	4,5	- 5	i,0	5,0	4,5	11,5	
nd VRk,cill =	= V _{Rk,c} ⊥ac ents het	cording to Ar	nnex C 3 δι	10	δN∞		and the second se	δνο	δν∞	
21		[mm/kav]	- Lui	m	funul		1		[mm]	
110	all	0,13	0,13*N	Rk / 3,5	2*8N0	0		and rate of a	1.	
	all				20,0.00	0	,31 0	,31*V _{Rk} / 3,5	1,5*δvo	
haracter	istic val	ues of ter	ision and	shear	load re	sista	nces und	er fire exp	osure	
nurdeter			and the second sec						ooure	
200	E	ffecitve	1000			acteris	stic Resista	ances	ooure	
Perforat	ed Anch	ffecitve orage depth	1			acteris k,b,H =	stic Resista NRk,p,ti = VF	ances ik,b,fi		
200	ed Anch	ffecitve orage depth her	1	30		acteris	stic Resista NRk,p,fi = VF	ances	R120	
Perforat	ed Anch	ffecitve orage depth	1			acteris k,b,H =	stic Resista NRk,p,ti = VF	ances ik,b,fi		
	SH 20 SH 20 essive stre gths, the s nd V _{Rk,c II} = placement ze 2 / 110	SH 20 ≥ 85 SH 20 ≥ 85 essive strengths resigns, the shown valued of VRk,cill = VRk,cille cplacements ze hef 2 / all 110 all	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SH 20 ≥ 85 5,0 5,0 SH 20 ≥ 85 5,0 5,0 essive strengths resistances must be multiplie gths, the shown values are valid without convind VRk,cill = VRk,cill according to Annex C 3 splacements ze hef $\delta N / N$ δN 2 / all 0,13 0,13*N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Brick type			Hollow cla						
Density	- Ika/da	-31	Porotherm ≥ 0,70	Homebric					or mail in the
Normalised mean	p [kg/dr				_				制使者
compressive strenght	fb [N/m	A Committee of	≥ 10						開開
Conversion factor for low strengths	er compre	essive	$(f_b / 10)^{0.5}$	≤ 1,0					
Code			EN 771-1:	2011+A1:2	015				(Dance
Producer (Country)			e.g. Wiene	erberger (F	R)		Youp	Change of the second se	
Brick dimensions	[mm]		500 x 200	x 300			and the second s		
Drilling method			Rotary dri	ling					
7,9 25 10,5	4,5			494			<u> H</u>	10.5	
10,5 Table C65: Installa	4,5					MIE		10.5	IG M10
10,5 Table C65: Installa Anchor size	tion para	[-]	M8	M10	M12	M16	IG-M6	S OF	-
10,5 Table C65: Installa Anchor size Installation torque	tion para	[-] [Nm]	≤2	M10 ≤ 2	≤2	≤2	≤ 2	90 0 1G-M8 ≤ 2	≤2
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance	tion para	[-] [Nm] [mm]	≤2	M10 ≤ 2		≤ 2 endicular t	≤ 2	90 0 1G-M8 ≤ 2	≤2
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance	tion para	[-] [Nm] [mm] [mm]	≤2	M10 ≤ 2	≤2	≤2	≤ 2	90 0 1G-M8 ≤ 2	≤2
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance	tion para Tinst Cor Cmin	[-] [Nm] [mm]	≤2	M10 ≤ 2	≤2	≤ 2 endicular f 120	≤ 2	90 0 1G-M8 ≤ 2	≤2
10,5	tion para Tinst Ccr Cmin Scr, II	[-] [Nm] [mm] [mm] [mm]	≤2	M10 ≤ 2	≤2	≤ 2 endicular f 120 500	≤ 2	90 0 1G-M8 ≤ 2	≤2
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥	[-] [Nm] [mm] [mm] [mm] [mm]	≤ 2 120	M10 ≤ 2	≤ 2 loads perpe	≤ 2 endicular 120 500 300 120	≤ 2	90 0 1G-M8 ≤ 2	
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	tion para Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm]	≤ 2 120 single an	M10 ≤ 2 (for shear	≤ 2 loads perpe he edge Sho	≤ 2 endicular 1 120 500 300	≤ 2 to the free	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>≤</u> 2 500)
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C66: Reduct Tension load	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	≤ 2 120 single an	M10 ≤ 2 (for shear chors at t ular to the f	≤ 2 loads perpe he edge Sho ree edge	≤ 2 endicular 1 120 500 300 120 ear load	≤ 2 to the free Parallel to	IG-M8 ≤ 2 edge: c _{cr} =	≤ 2 500) dge
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C66: Reduct Tension load with c ≥	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	≤ 2 120 single an	M10 ≤ 2 (for shear chors at t ular to the f with c ≥	≤ 2 loads perpe he edge Sho ree edge αedge, v⊥	≤ 2 endicular 1 120 500 300 120 ear load	≤ 2 to the free Parallel to	$ G-M8 \le 2$ edge: c _{cr} =	≤ 2 500) dge αedge, ∨ II
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C66: Reduct Tension load	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	≤ 2 120 single an	M10 ≤ 2 (for shear chors at t ular to the f	≤ 2 loads perpe he edge Sho ree edge	≤ 2 endicular 1 120 500 300 120 ear load	≤ 2 to the free Parallel to	IG-M8 ≤ 2 edge: c _{cr} =	<u>≤</u> 2 500)
10,5 Table C65: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C66: Reduct Tension load with c ≥	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	≤ 2 120 single an	$M10 \le 2$ (for shear) (for sh	≤ 2 loads perpe he edge Shu ree edge α _{edge} , v⊥ 0,30	≤ 2 endicular 1 120 500 300 120 ear load	≤ 2 to the free Parallel to	$ G-M8 \le 2$ edge: c _{cr} =	≤ 2 500) dge αedge, ∨ II

Table C67:			groups u	nder tens	and a setting down in					
Anch	nor position p				And	chor p	osition perpe	endicular to hor.	joint	
·····	with c ≥	with s	≥ a	3 II, Ń		1	with c ≥	with s ≥	α ₉ 1, N	
	120	100		1,00		1	120	100	1,00	
	200	100		,00			200	100	1,20	
	120	500	2	,00	_	11	120	300	2,00	
Table C68:	Factors for	or anchor	groups u	nder shea	r load		-		_	
	Anch	or position	parallel to h		1	Ancho	or position pe	erpendicular to h	nor. joint	
		with c a	with s		E-1		with c	≥ with s ≥	αg ±, V ±	
Shear load perpendicular		120	100	0,30			120	100	0,30	
to the free		250	100	0,60			250	100	0,60	
edge		500	100	1,00			120	300	2,00	
		120 1 with c a	500	2,00		_	1 with c	≥ with s ≥		
Shear load		120	100	≥ α _g li,v i 1,00			120	100	α _{g 1,V II} 1,00	
arallel to the ee edge		120	500	2,00		٠	120	300	2.00	
				1				300	2,00	
Table C69:	Character	istic value	es of tensi	F 1 1 F 1 S K 1 1	1	26.22	1 - 1 - 1			
	1.0		_	Characte	eristic Res	sistan	ces with c≥	c_{cr} and $s \ge s_{cr}$		
	۵	. O				Use c	ondition			
	Perforated sleeve	Effective Anchorage depth		d/d			w/c w/v		d/d w/d w/w	
Anchor size	ated	And		1.1.1	. L	1.75		the second	All	
	erfora		40°C/24°C 8	30°C/50°C 12	20°C/72°C	40°C	/24°C 80°C/5	0°C 120°C/72°C	temperatur ranges	
		het	NF	Rk,b = NRK,p ²⁾			NRk.b =	NRk.p ²⁾	VRk.b ²⁾	
		[mm]					kN]			
	1		ed mean co	mpressive			10 N/mm ^{2 1)}		_	
M8	SH 12	80				,2	1.11		3,0	
M8 / M10/	SH 16	≥ 85				,2			3,0	
IG-M6		130			1	5			3,5	
M12 / M16/ IG-M8 / IG-M1	0 SH 20	≥ 85 ≥ 130			1				4,0	
1) For lower con	mpressive stre trengths, the s	engths resist shown value = V _{Rk.c} ⊥acco	s are valid wi	ithout conver	by the cor		n factor acco	rding to Table C6		
Analys	v alma	hef	δN/N	δΝΟ	1	5N∞	δν / V	δνο	δV∞	
Ancho	i size	[mm]	[mm/kN]	[mm]] [r	nm]	[mm/kN]	[mm]	[mm]	
M8 – IG-M6		all	0.40	0 10201	195 0	+0	0,55	0,55*V _{Rk} / 3,5	1,5*8v0	
IG-Mb Mi		all	0,13	0,13*Nfr	/ 3,5 2	*8N0	0,31	0,31*V _{Bk} / 3,5	-	
Injection systemasonry	em EJOT M	ultifix Viny	lester / Sol	rmat ITH Vi	inylester	for		- Anna - Anna		
Performances	hollow cla characterist							Annex C 22		

Brick type				Hollow cla						
Density		p [kg/dr	n ³]	BGV The ≥ 0,60	rmo			-	Carrow and	
Normalised r		f _b [N/mr		≥ 10		_		Alle	947	
compressive		1210	Contraction of the second s			_			× .	
strengths	actor for lowe	er compre	essive	(f _b / 10) ^{0,5}	9.1≥			-		
Code				EN 771-1	:2011+A1:2	015			1	
Producer (Co	ountry)			e.g. Lerou		1		-	1	
Brick dimens	1	[mm]		500 x 200						
Drilling meth	od			Rotary dr	illing					
								-	-	
									52	
								<u> </u>		
								0	a l	
						- 6	51			
	-								200	
								70		
	//									
	F		+-			d C				
					500				1	
Table C72:	5		ameter	_	500				_	
The second	: Installat		[-]	M8	M10	M12	M16	IG-M6	IG-M8	
Anchor size Installation to	: Installat		[-] [Nm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2	≤2	≤2	IG-M10 ≤ 2
Anchor size Installation to Char. Edge o	i Installat	ion para	[-] [Nm] [mm]	M8 ≤ 2	M10	≤2	≤ 2 endicular i	≤2	≤2	≤2
Anchor size Installation to Char. Edge o	i Installat	ion para Tinst Cer Cmin	[-] [Nm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular f 120	≤2	≤2	≤2
Anchor size Installation to Char. Edge o Minimum Edg	: Installat orque distance ge Distance	Tinst Ccr Cmin Scr, II	[-] [Nm] [mm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular 1 120 500	≤2	≤2	≤2
Anchor size Installation to Char. Edge o Minimum Ed Characteristi	s Installat orque distance ge Distance c Spacing	Tinst Ccr Cmin Scr, II Scr, 1	[-] [Nm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular 120 500 315	≤2	≤2	≤2
Anchor size Installation to Char. Edge o Minimum Ed Characteristi	s Installat orque distance ge Distance c Spacing	Tinst Ccr Cmin Scr, II	[-] [Nm] [mm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular 1 120 500	≤2	≤2	≤2
Anchor size Installation to Char. Edge o Minimum Ed Characteristi	s Installat brque distance ge Distance c Spacing acing	Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120	M10 ≤ 2	≤ 2 loads perpo	≤ 2 endicular 120 500 315 120	≤2	≤2	≤2
Anchor size Installation to Char. Edge c Minimum Edg Characteristi Minimum Sp Table C73:	installat prque distance ge Distance c Spacing acing ing ing	Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 12(single an	M10 ≤ 2 D (for shear	≤ 2 loads perp he edge Sh	≤ 2 endicular 120 500 315	≤ 2 to the free	≤ 2 edge: c _{or} =	≤ 2 500)
Anchor size Installation to Char. Edge c Minimum Edg Characteristi Minimum Sp Table C73:	: Installat orque distance ge Distance c Spacing acing : Reducti Fension load	ion para Tinst Cor Cmin Sor, II Sor, ⊥ Smin, ⊥ on facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 12(single an	M10 ≤ 2 D (for shear Achors at t	≤ 2 loads perpo he edge Sh iree edge	≤ 2 endicular 1 120 500 315 120 ear load	≤ 2 to the free Parallel to	≤ 2 edge: c _{or} =	≤ 2 500) dge
Anchor size Installation to Char. Edge c Minimum Edg Characteristi Minimum Sp Table C73:	installat prque distance ge Distance c Spacing acing ing ing	Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 12(single an	$M10 \le 2$ 0 (for shear) 0 (fo	≤ 2 loads perpo he edge Sh iree edge αedge, v.	≤ 2 endicular 1 120 500 315 120 ear load	≤ 2 to the free Parallel to	≤ 2 edge: c _{or} =	≤ 2 500) dge
Anchor size Installation to Char. Edge c Minimum Edg Characteristi Minimum Sp Table C73:	: Installat orque distance ge Distance c Spacing acing : Reducti Fension load	ion para Tinst Cor Cmin Sor, II Sor, ⊥ Smin, ⊥ on facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for :	M8 ≤ 2 12(single an	$M10 \le 2$ 0 (for shear) Chors at the second	≤ 2 loads perpo he edge Sh ree edge aedge, v 0,30	≤ 2 endicular 1 120 500 315 120 ear load	≤ 2 to the free Parallel to	≤ 2 edge: c _{or} =	≤ 2 500) dge
Anchor size Installation to Char. Edge c Minimum Edg Characteristi Minimum Sp Table C73:	 Installat installat orque distance ge Distance c Spacing acing acing Reducti Fension load with c ≥ 	ion para Tinst Cer Cmin Scr, II Sor, ⊥ Smin, ⊥ Smin, ⊥ on facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for :	M8 ≤ 2 12(single an	$M10 \le 2$ 0 (for shear) 0 (fo	≤ 2 loads perpo he edge Sh iree edge αedge, v.	≤ 2 endicular 1 120 500 315 120 ear load	≤ 2 to the free Parallel to	≤ 2 edge: $c_{cr} =$ the free e with $c \geq 1$	≤ 2 500) dge αedge, ∨ ⊪
Anchor size Installation to Char. Edge of Minimum Ed Characteristi Minimum Sp Table C73:		ion para Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, 1 on factor αedge, 1 1,000	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single an Perpendic	$\begin{array}{c c} M10 \\ \leq 2 \\ D \text{ (for shear} \\ \end{array}$	≤ 2 loads perpo he edge Sh iree edge 0,30 0,60 1,00	≤ 2 endicular 1 120 500 315 120 ear load	≤ 2 to the free Parallel to	≤ 2 edge: $c_{cr} =$ the free e with $c \geq$ 120	≤ 2 500) dge α _{edge, V II} 0,60

Table C74:		and the second sec	r groups i	under ter			_		_		
Anch	nor position p				- 19	Anch		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		cular to hor.	joint
······	with c ≥	with s	s≥ c	Xg II, N		- 1	1.0	with c ≥	$ = ^{*}$	with s ≥	α _g 1, N
	120	100		1,00		•	1.1	120	1	100	1,00
	200	100		1,70	March 1	۰.	1	200		100	1,10
	120	500		2,00			1	120		315	2,00
Table C75:	Factors fo	or ancho	r groups i	under sh	ear loa	d					
	Anche	or position	parallel to	hor. joint		A	ncho	r position	perpe	endicular to h	or. joint
Shear load		with c	≥ with s	i≥ αg∥	V L I		-	with	C≥	with s ≥	α _{g⊥,V⊥}
perpendicular		120	100	1,0	00		1	12	0	100	1,00
to the free edge		120	500	2.0	00			12	0	315	2,00
		with c	≥ with s	i≥ α _{g ii}	VII I	-	IC	1 with	c >	with s ≥	α _{g ⊥,V} II
Shear load parallel to the		120	100	-78 ···			+	12	20.2	100	1,00
free edge	1	120	500			1		12	_	315	2,00
Table C76:	Character			1.5.0		lees			-		
Table C/6:	Character	ISUC Val	ues or ten			-			_	20.2.20.00	
		-		Chara	cteristic			ces with condition	≥ Ccr	and s ≥ s _{cr}	
	ę	a e				Ĭ	ac C				d/d
	Perforated sleeve	Effecitve Anchorage depth		d/d					v/d		w/d
Anabaraina	g	Iffed					-		v/w		w/w
Anchor size	ate	Α̈́Ψ	maning	and all and a	-				5.5		All
	rtor	1.1	40°C/24°C	80°C/50°C	120°C/7	2°C /	40°C/	24°C 80°C	/50°C	120°C/72°C	temperatur
	Pe	het			2)	-				2)	ranges
		[mm]	N	IRK,b = NRK,g	2	-	rt.	NRk,b	= INRk	p	VRk,b ²⁾
-			ed mean c	omnroeei	uo etron	ath	-		1)		
M8	SH 12	80	eu mean c	ompressi	ve suen	0.9		0 N/IIIII	~		3,5
M8 / M10/		≥ 85				0.9					3,5
IG-M6	SH 16	130	2,	0	1,5			2,0		1,5	4,0
M12 / M16	SH 20	≥ 85				0,9	i,			-	4,0
IG-M8 / IG-M1	0	≥ 130	2,		1,5		_	2,0	_	1,5	4,0
 For lower conwith higher s NRK,b,c = NRK, Table C77: 	trengths, the s	Hown value VRk,c⊥acc	es are valid v	without conv		conv	ersioi	n factor ac	cordin	g to Table C7	 For stones
	and an	het	δN/N	δr	NO	8	100	δv / V		δνο	δV∞
Ancho	rsize	[mm]				[m		[mm/kN		[mm]	[mm]
M8 – 1 IG-M6		all	0,13	0,13"N		2*8		0,55		,55*V _{Rk} / 3,5	
M		all	0,10	0,10 14		-		0,31	C	,31*VRk/3,5	1,5*δvo
Injection systems	em EJOT Mi	ultifix Vin	ylester / Sc	ormat ITH	Vinyles	ter f	or		_		
Performances Group factors,					nts					Annex C	24

Brick type				Hollow cla						
Density		p [kg/dr	n31	Calibric R ≥ 0.60	+	_		-		-
Normalised r	nean						-			
compressive	strenght	f _b [N/mr	2	≥ 12			1	Sector d	而那個相	1
Conversion fa strengths	actor for lowe	er compre	essive	(fb / 12)0,5	≤ 1,0					
Code				EN 771-1:	2011+A1:2	015				and and
Producer (Co	ountry)			e.g. Lerou	x (FR)				UNIVER .	
Brick dimens	ions	[mm]		500 x 200	x 314					
Drilling method	od			Rotary dril	lling					
									200	
	40			6	500			-	201	
Table C79:	ŀ.									
Anchor size	Installat	ion para	[-]	M8	M10	M12	M16	IG-M6	IG-M8	
Anchor size Installation to	Installat	ion para	[-] [Nm]	M8 ≤ 2	M10 ≤ 2	≤2	≤2	IG-M6 ≤ 2		≤ 2
Anchor size Installation to Char. Edge c	Installat	ion para	[-] [Nm] [mm]	M8 ≤ 2	M10 ≤ 2	C 2 1 1 1 1 1	≤2	IG-M6 ≤ 2		≤2
Anchor size Installation to Char. Edge o Minimum Edg	Installat orque distance ge Distance	ion para	[-] [Nm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 ndicular t	IG-M6 ≤ 2		≤ 2
Anchor size Installation to Char. Edge o Minimum Edg	Installat orque distance ge Distance	Tinst Cor Crin	[-] [Nm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 Indicular 1 120	IG-M6 ≤ 2		≤2
Anchor size Installation to Char. Edge o Minimum Edg Characteristi	installat prque distance ge Distance c Spacing	Tinst Cor Cmin Scr. II	[-] [Nm] [mm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 indicular 1 120 500	IG-M6 ≤ 2		≤ 2
Table C79: Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	installat prque distance ge Distance c Spacing acing	Ion para Tinst Cor Cmin Scr, II Sor, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2 (for shear	≤ 2 loads perpe	≤ 2 ndicular 1 120 500 315 120	IG-M6 ≤ 2		
Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	installat prque distance ge Distance c Spacing acing	Ion para Tinst Cor Cmin Scr, II Sor, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t	≤ 2 loads perpe he edge She	≤ 2 indicular 1 120 500 315	IG-M6 ≤ 2 to the free	IG-M8 ≤ 2 edge: c _{or} =	<u>≤ 2</u> 500)
Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	Installat orque distance ge Distance c Spacing acing Reduction Fension load	ion para Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm] prs for	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t	≤ 2 loads perpe he edge She ree edge	≤ 2 indicular 1 120 500 315 120 ear load	IG-M6 ≤ 2 to the free Parallel to	IG-M8 ≤ 2 edge: c _{cr} =	≤ 2 500) dge
Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	Installat installat prque distance ge Distance c Spacing acing acing Reduction Fension load with c ≥	ion para Tinst Cor Cmin Scr, II Sor, 1 Smin, 1 Smin, 1 Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm] prs for	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t	≤ 2 loads perpe he edge She	≤ 2 indicular 1 120 500 315 120 ear load	IG-M6 ≤ 2 to the free Parallel to	$\begin{array}{ c c c } \hline IG-M8 \\ \leq 2 \\ edge: c_{cr} = \\ \hline \\ c_{cr} = \\ c_{cr} = \\ \hline \\ c_{cr} = $	≤ 2 500) dge αedge. ∨ ()
Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	Installat installat prque distance ge Distance c Spacing acing Reduction Fension load with c ≥ 120	ion para Tinst Cor Cmin Scr. II Scr. 1 Smin. II: Smin. 1 on factor αedge, f 1,00	[-] [Nm] [mm] [mm] [mm] [mm] prs for	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t ular to the f with c \geq 120 250	≤ 2 loads perpe he edge she ree edge αedge, V⊥ 0,15 0,30	≤ 2 indicular 1 120 500 315 120 ear load	IG-M6 ≤ 2 to the free Parallel to	$ IG-M8 \le 2$ edge: c _{or} =	≤ 2 500) dge αedge, ∀ () 0,30
Anchor size Installation to Char. Edge o Minimum Edg Characteristi Minimum Spa Table C80:	Installat installat prque distance ge Distance c Spacing acing acing Reduction Fension load with c ≥	ion para Tinst Cor Cmin Scr, II Sor, 1 Smin, 1 Smin, 1 Smin, 1	[-] [Nm] [mm] [mm] [mm] [mm] prs for	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t ular to the f with c \geq 120	≤ 2 loads perpe he edge She ree edge αedge, V⊥ 0,15	≤ 2 indicular 1 120 500 315 120 ear load	IG-M6 ≤ 2 to the free Parallel to	$\begin{array}{ c c c } \hline IG-M8 \\ \leq 2 \\ edge: c_{cr} = \\ \hline \\ c_{cr} = \\ c_{cr} = \\ \hline \\ c_{cr} = $	≤ 2 500) dge αedge. ∨ ()

Table C81:	and the second se	Constant of Arthough Martin	and the second second	under te	nsion loa					
Anci	nor position (1	Ai	ichor p			dicular to hor	. joint
······	with c ≥	with s	-	Clg II, N	1		with		with s ≥	αg 1, Ν
	120	100		1,00			12		100	1,00
	175	100		1,70			17		100	1,10
	120	500		2,00			12	20	315	2,00
Table C82:	Factors f	or ancho	r groups	under sl	near load					
	Anch	or position	parallel to	hor. joint		Ancho	or po	sition perp	endicular to	hor. joint
Shear load	1 million	with c	≥ with s	S≥ αg	ILV 1	17	11	with c ≥	with s ≥	$\alpha_{9} \perp v \perp$
perpendicular		120	100) 1	,00	1		120	100	1,00
o the free edge		120	500) 2	,00			120	315	2,00
		with c		1.	11.V II			with c ≥	with s ≥	α(g ⊥,∨ II
Shear load	100	120	100		.00			120	100	1,00
parallel to the ree edge		100		-						
ree euge	-	1 120	500) 2	,00		.1	120	315	2,00
Table C83:	Characte	ristic valu	ues of ter	nsion an	d shear lo	ad res	sista	inces		
				Chara	acteristic R	esistan	ces v	with $c \ge c_{c_1}$	and s ≥ s _{cr}	
			-			Use c			U	-
	eve Sve	Effective Anchorage depth				0000	ondi			d/d
	slee	ffectivi ichoraç depth		d/d				w/d w/w		w/d
Anchor size	pe	de							-	w/w
	Perforated sleeve		40°C/24°C	80°C/50°C	120°C/72°C	C 40°C/	24°C	80°C/50°C	120°C/72°C	All temperatur ranges
	ď.	her	N	IRK,5 = NRK	2)		r	NRK.D = NRK	2)	VRk.b ²⁾
		[mm]		HK,D - IVHK	,p	1	kN]	NHK.D - INHK	,p.	V HA,O
			ed mean c	ompress	ive streng			/mm ^{2 1)}		
M8	SH 12	80	1,2	1,2	0,9	1,		1,2	0,9	4,0
M8 / M10/		≥ 85	1,2	1,2	0,9	1,		1,2	0,9	5,5
IG-M6	SH 16	130	1,5	1,5	1,2	1,	5	1,5	1,2	5,5
M12/M16	SH 20	≥ 85	1,2	1,2	0,9	1,	2	1,2	0,9	8,5
IG-M8 /IG-M1	0	≥ 130	1,5	1,5	1,2	1,		1,5	1,2	8,5
 For lower co with higher s N_{Rk.b.c} = N_{Rk} Table C84: 	trengths, the s	shown value = V _{Rk,c} ⊥acc	es are valid cording to Ar	without cor		onversio			ng to Table C7	78. For stones
Ancho	or size	hef	δN / N		5NO	δN∞		v/V	δνο	δV∞
1	en e serar e	[mm]	[mm/kN]	[r	nm]	[mm]	[m	m/kN]	[mm]	[mm]
M8 – IG-M6	M12 / M10	all	0,13	0,13*1	NRk / 3,5	2*8N0	1	0,55	0,55*V _{Rk} / 3,	5 1,5*δνα
M	16	all					(0,31	0,31*VRk/3,	5 1,5*δvc
M	16	all					(0,31	0,31*V _{Rk} / 3,9	5 1, 5 *δνα
Injection syst	em EJOT M	ultifix Vin	ylester / S	ormat ITH	l Vinyleste	r for				

And Out Inc.			Hollow cla	av brick					
Brick type			Urbanbric					-	
Density	p [kg/dr	n ³]	≥ 0,70						
Normalised mean compressive strenght	f _b [N/mr	m²]	≥ 12			~	2		
Conversion factor for low strengths	er compre	essive	(f _b / 12) ^{0,5}						
Code			EN 771-1	:2011+A1:2	015			100	
Producer (Country)			e.g. Imery			× 1	1		
Brick dimensions	[mm]	-	560 x 200				~		
Drilling method			Rotary dri	illing					
q		33							200
9 40 6		Ì		560				9.5	
9	tion para	ameter		560				 	
9 6 Table C86: Installa Anchor size	ition para	[-]	M8	M10	M12	M16	IG-M6	IG-M8	
9 6 Table C86: Installa Anchor size Installation torque	tion para	[-] [Nm]	≤ 2	M10 ≤ 2	≤ 2	≤2	≤2	1G-M8 ≤ 2	IG-M10 ≤2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance	Tinst Cor	[-] [Nm] [mm]	≤ 2	M10 ≤ 2		≤ 2 endicular	≤2	1G-M8 ≤ 2	IG-M10 ≤2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance	Tinst Ccr Cmin	[-] [Nm] [mm] [mm]	≤ 2	M10 ≤ 2	≤ 2	≤ 2 endicular 120	≤2	1G-M8 ≤ 2	IG-M10 ≤2
9	Tinst Cer Cmin Ser, II	[-] [Nm] [mm] [mm] [mm]	≤ 2	M10 ≤ 2	≤ 2	≤ 2 endicular 120 560	≤2	1G-M8 ≤ 2	IG-M10 ≤ 2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Cor Cmin Sor, II Sor, 1	[-] [Nm] [mm] [mm]	≤ 2	M10 ≤ 2	≤ 2	≤ 2 endicular 120	≤2	1G-M8 ≤ 2	IG-M10 ≤ 2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	Tinst Cer Cmin Ser, II	[-] [Nm] [mm] [mm] [mm]	≤ 2	M10 ≤ 2	≤ 2	≤ 2 endicular 120 560	≤2	1G-M8 ≤ 2	IG-M10 ≤2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	Tinst Cor Cmin Scr. II Scr. J Smin, II: Smin, L	[-] [Nm] [mm] [mm] [mm] [mm]	≤ 2 120	M10 ≤ 2	≤ 2 loads perpe	≤ 2 endicular 120 560 275 100	≤2	1G-M8 ≤ 2	IG-M10 ≤ 2
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	Tinst Cer Cmin Scr. II Scr. I. Smin. II: Smin. I. Smin. I.	[-] [Nm] [mm] [mm] [mm] [mm]	≤ 2 120 single an	M10 ≤ 2) (for shear	≤ 2 loads perpe he edge She	≤ 2 endicular 120 560 275	≤ 2 to the free	1G-M8 ≤ 2 edge: c _{or} =	IG-M10 ≤ 2 500)
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C87: Reduct Tension load	Tinst Cer Cmin Ser, II Ser, I Smin, II; Smin, I ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	≤ 2 120 single an	M10 ≤ 2 0 (for shear chors at t	≤ 2 loads perpe he edge She	≤ 2 endicular 120 560 275 100 ear load	≤ 2 to the free Parallel to	IG-M8 ≤ 2 edge: c _{or} =	IG-M10 ≤ 2 500) dge
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C87: Reduct Tension load with c ≥	Tinst Cer Cmin Ser, II Ser, I Smin, II: Smin, L tion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	≤ 2 120 single an	M10 ≤ 2) (for shear	≤ 2 loads perpe he edge She	≤ 2 endicular 120 560 275 100 ear load	≤ 2 to the free Parallel to	$1G-M8 \le 2$ edge: c _{or} =	IG-M10 ≤ 2 500) dge αedge, ⊻ II
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C87: Reduct Tension load	Tinst Cer Cmin Ser, II Ser, I Smin, II; Smin, I ion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	≤ 2 120 single an	M10 ≤ 2 (for shear chors at t cular to the t with c \geq	≤ 2 loads perpe he edge She ree edge αedge, v⊥	≤ 2 endicular 120 560 275 100 ear load	≤ 2 to the free Parallel to	IG-M8 ≤ 2 edge: c _{or} =	IG-M10 ≤ 2 500) dge
9 6 Table C86: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C87: Reduct Tension load with c ≥	Tinst Cer Cmin Ser, II Ser, I Smin, II: Smin, L tion facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	≤ 2 120 single an	$M10 \le 2$ (for shear) (for sh	≤ 2 loads perpe he edge She ree edge αedge, V⊥ 0,25	≤ 2 endicular 120 560 275 100 ear load	≤ 2 to the free Parallel to	$1G-M8 \le 2$ edge: c _{or} =	IG-M10 ≤ 2 500) dge αedge, ⊻ II

	and the second second second second second	and the second se	r groups	under ter		_				
And	nor position p				A	Anchor			dicular to hor.	joint
	with c ≥	with s		Xg II, Ń		1	with		with s ≥	αg 1, N
	120	100		1,00	11.13	•	12	Aug. 199	100	1,00
	185	100		1,90	1000		18		100	1,10
	120	560)	2,00			12	0	275	2,00
Table C89:	Factors for	or ancho	r groups i	under sh	ear load	1				
	Anch	or position	parallel to	hor. joint		Anc	hor pos	sition perp	endicular to h	nor. joint
Shear load	(main	with c	≥ with s	i≥ αg∥	,V⊥ :	- 17	11	with c ≥	with s ≥	αg⊥.v⊥
perpendicular		120	100	1,0	00	1		120	100	1,00
to the free edge	1	120	560	2.0	00			120	275	2,00
		with c		1		10	1	with c ≥	with s ≥	άg ⊥,γ II
Shear load parallel to the		120	100					120	100	1,00
free edge		120	and the second se				•	120	275	2,00
					1.0	100		12.15*	1.619	2,00
Table C90:	Character	istic val	ues of ten	and the second		201010	- [1 1 1 A			
				Chara	cteristic F				and $s \ge s_{cr}$	
	Q	Ð				Use	e condit	tion		
	Perforated sleeve	Effective Anchorage depth		44				w/d		d/d
	1 sle	cho		d/d				w/w		w/d w/w
Anchor size	atec	And	Taka a sal	1.000				1	1	All
	fore		40°C/24°C	80°C/50°C	120°C/72	°C 40	°C/24°C	80°C/50°	C 120°C/72°C	temperatur
	Per	_								ranges
		hei	Ň	RK,D = NRK,	2)	_	11. T	NRK,b = NR	2) K,p	VRk,b ²⁾
		[mm]					[kN]			
			ed mean c			gth fb			1	0.0
M8	SH 12	80	1,2	1,2	0,9	-	1,2	1,2	0,9	4,5
M8 / M10/ IG-M6	SH 16	≥ 85 130	1,2	1,2	0,9		1,2	1,2	0,9	4,5
M12 / M16		≥ 85	3,0 1,2	3,0 1,2	2,5		3,0	3,0	2,5	4,5 5,0
IG-M8 / IG-M	0 SH 20	≥ 130	3,0	3,0	2,5		3,0	3,0	2,5	5,0
 For lower conwith higher s N_{Rk,b,c} = N_{Rk,j} Table C91: 	trengths, the s	hown valu = V _{Rk,c} ⊥aco	stances musi es are valid v	t be multiplie without conv	ed by the	conver				
Anobe	r eizo	hef	δN/N	δι	NO	δN∞	8	v/V	δγο	δV∞
Anche	size	[mm]	[mm/kN]	[m	m]	[mm]	[m	m/kN]	[mm]	[mm]
	M12/	all	0.10	0.13'N	Rk / 3,5	2*8N	0	0,55	0,55*V _{Rk} / 3,5	1,5*8vo
M8 – IG-M6		Call,	0,13							
Table C91:	Displacem or size	ents hef	δη/Ν	δι			_			
	VILLI	all	0.40	0.13°N	RK/35	2*8NO		1,55	0,55"VRk/ 3,5	1,5*8V
M8 -				0.13"N	Bk/35	2*8NO	S	137	and there are	

Brick type				Hollow cla Brique cre					-	
Density		p [kg/dn	n ³]	≥ 0,70	use 040				1	
Normalised n	nean	fb [N/mr		≥ 12				1		1
compressive		1000		< 12			1.0			
Conversion fa strengths	actor for lowe	er compre	essive	$(f_b / 12)^{0.5}$	≤ 1,0	- 1		The		1
Code				EN 771-1:	2011+A1:2	015			5 1	
Producer (Co	untry)			e.g. Terre	al (FR)	1			-	
Brick dimensi	ions	[mm]		500 x 200	x 200			-		
Drilling metho	bd			Rotary dri	lling					
A free of the second	Installat	ion para	ameter		00	-	MIG			
			ameter	2 	M10		M16	IG-M		
Anchor size Installation to	rque	Tinst	ameter [-] [Nm]	2 	M10 ≤ 2		≤ 2	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d	rque istance	Tinst Ccr	ameter [-] [Nm] [mm]	2 	M10		≤ 2 endicular	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg	rque istance ge Distance	Tinst Ccr Cmin	ameter [-] [Nm] [mm] [mm]	2 	M10 ≤ 2		≤ 2 endicular 120	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg	rque istance ge Distance	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm]	2 	M10 ≤ 2		≤ 2 endicular	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg Characteristic	rque listance ge Distance c Spacing	Tinst Ccr Cmin	ameter [-] [Nm] [mm] [mm]	2 	M10 ≤ 2		≤ 2 endicular 120 500	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg Characteristic	rque listance ge Distance c Spacing acing	Tinst Ccr Cmin Scr, II Scr, 1 Smin, 11; Smin, 1	ameter [-] [Nm] [mm] [mm] [mm] [mm]	2 <u>M8</u> ≤ 2 120	M10 ≤ 2	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg Characteristic Minimum Spa	rque istance ge Distance c Spacing acing Reducti	Tinst Ccr Cmin Scr, II Scr, 1 Smin, 11; Smin, 1	ameter [-] [Nm] [mm] [mm] [mm] [mm]	2 <u>M8</u> ≤ 2 120	M10 ≤2 (for shear b	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200	≤2	≤ 2	≤2
Anchor size Installation to Char. Edge d Minimum Edg Characteristic Minimum Spa Table C94:	rque istance ge Distance c Spacing acing Reducti	Tinst Ccr Cmin Scr, II Scr, 1 Smin, 11; Smin, 1	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	2 	M10 ≤ 2 (for shear b chors at the ular to the f	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200 200	≤ 2 to the fre	≤ 2	≤ 2 pr = 500)
Anchor size Installation to Char. Edge d Minimum Edg Characteristic Minimum Spa Table C94:	rque istance ge Distance c Spacing acing Reducti with c ≥	Tinst Car Cmin Sar, II Sar, ⊥ Smin, ⊥ On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	2 	M10 ≤ 2 (for shear b chors at the ular to the f with c ≥	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200 200 200 ear load	≤ 2 to the fre	≤ 2 ee edge: c I to the free with c ≥	≤ 2 or = 500) e edge αedge, v
Anchor size Installation to Char. Edge d Minimum Edg Characteristic Minimum Spa Table C94:	rque istance ge Distance c Spacing acing Reducti with c ≥ 120	Tinst Ccr Cmin Scr, II Ser, ⊥ Smin, II; Smin, ⊥ on factor αedge, r 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	2 	M10 ≤ 2 (for shear b chors at the ular to the f with c ≥ 120	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200 200 200 ear load	≤ 2 to the fre	≤ 2 ee edge: co l to the free with c \geq 120	≤ 2 or = 500) e edge α _{edge} , v 1,00
Anchor size Installation to Char. Edge d Minimum Edg Characteristic Minimum Spa Table C94:	rque istance ge Distance c Spacing acing Reducti with c ≥	Tinst Car Cmin Sar, II Sar, ⊥ Smin, ⊥ On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	2 <u>M8</u> ≤ 2 120 single an Perpendic	M10 ≤ 2 (for shear b chors at the ular to the f with c ≥	M12 ≤ 2 loads perpe	≤ 2 endicular 120 500 200 200 200 ear load	≤ 2 to the fre Paralle	≤ 2 ee edge: c I to the free with c ≥	≤ 2 or = 500) e edge αedge, v

And	nor position	and the second second second	and the second second second	under ter	A second s	4.454	nociti	an porpor	dicular to hor.	ioint
And	with c ≥	with s		0.00		Anchor		ic≥	with s ≥	
		with a	5 <u>2</u>	Ωg II, Ń	100		NYILLI	02	with S 2	αg 1, Ν
	120	500	6	2,00		•	12	20	200	2,00
Table C96:				under sh	ear loa					
	Anc	nor position	parallel to	o hor. joint		Anc	hor po		pendicular to I	nor. joint
Shear load		with c	≥ with	s≥ αgi	,V⊥		1	with c ≥	with s ≥	$\alpha_g \perp v \perp$
perpendicular to the free edge		120	50	0 2,0	00			120	200	2,00
Shear load	4	with c	≥ with	s 2 agi	LV II		1	with c ≥	with s ≥	C4g ⊥,V θ
parallel to the free edge		120	50	0 2,0	00			120	200	2,00
Table C97:	Characte	ristic val	ues of te	nsion and	shear	load r	esista	ances		
	21.01			Chara	cteristic	Resista	nces	with $c \ge c_r$	r and s ≥ s _{cr}	
	5	1.21					condi	-		
	eve	Effective Anchorage depth						w/d		d/d
	sle	cifective Ichorag depth		d/d				w/w		w/d
Anchor size	ted	And		1	1	-		1	1	w/w All
	Perforated sleeve		40°C/24°C	80°C/50°C	120°C/7	2°C 40°	°C/24°C	80°C/50°	C 120°C/72°C	temperatur ranges
	-	het		NRK,B = NRK,	2)			NRk,b = N	2) Rk.p	VRk,b ²⁾
1.00		[mm]			_		[kN]	1		
1.12	Lawre		ed mean	compressi	ve stren	igth fb	≥ 12 N	/mm ^{2 1)}	1	
M8	SH 12	80								
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	1,2	0,9		1,2	1,2	0,9	1,5
M12 / M16 / IG-M8 / IG-M	SH 20	≥ 85								
 For lower co with higher s NRk.b.c = NRk Table C98: 	trengths, the	shown valu = V _{Rk,c} ⊥ace	es are valid	without conv	ed by the version.	convers	sion fac	tor accord	ing to Table C9	2. For stones
1.000		həf	δN/N	St	NO	δN∞	8	v/v	δνο	δ∨∞
Ancho	or size	(mm)			m]	[mm]	_	m/kN]	[mm]	[mm]
M8 – IG-M6	M12 / M10	all	0,13	10000	Rk / 3,5	2*8NO		0,55	0,55*VRk/3,5	
M		all	0,10	0,10 14	ni / 0,0	2 0100		0,31	0,31*V _{Rk} / 3,5	1,5*δvo
Injection syst masonry	em EJOT N	luitifix Vin	ylester / S	Gormat ITH	Vinyles	ter for			-	
Performances Group factors, c									Annex C	30

Brick type		1.1		Hollow cla						
Density		p [kg/dn	n ³]	Blocchi Le ≥ 0.60	ggeri			1		
Normalised I	mean							6		
compressive	strenght	f _b [N/mr		≥ 12				22.		
	factor for lowe	r compre	essive	(f _b / 12) ^{0,5}	≤ 1,0					
strengths Code				EN 771-1:	2011+A1-2	015				
Producer (C	ountry)			e.g. Wiene	1.1 Children & Children and Li			858	1	
Brick dimens		[mm]		250 x 120		/		10		
Drilling meth			_	Rotary dril						
	t							- 32 -6-		
		43	6	2	50			-		
the second second second	0: Installat		ameter	1		M12	Mie		10 19	
Anchor size		ion para	ameter [-]	M8	M10	M12	M16	IG-M6	1G-M8	and the first second
Anchor size Installation to	orque	ion para	ameter [-] [Nm]		M10 ≤ 2	≤2	≤2	≤ 2	≤ 2	≤2
Anchor size Installation to Char. Edge	orque distance	ion para Tinst Ccr	ameter [-] [Nm] [mm]		M10 ≤ 2	and the second se	≤2	≤ 2	≤ 2	≤2
Anchor size Installation to Char. Edge Minimum Ed	orque distance Ige Distance	ion para	ameter [-] [Nm]		M10 ≤ 2	≤2	≤ 2 ndicular	≤ 2	≤ 2	≤2
Anchor size Installation to Char. Edge Minimum Ed	orque distance Ige Distance	ion para Tinst Cor Crrim	ameter [-] [Nm] [mm] [mm]		M10 ≤ 2	≤2	≤ 2 ndicular 60	≤ 2	≤ 2	≤2
Table C10 Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp	orque distance Ige Distance ic Spacing	Tinst Cor Corin Scr. II	ameter [-] [Nm] [mm] [mm]		M10 ≤ 2	≤2	≤ 2 ndicular 60 250	≤ 2	≤ 2	
Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp	orque distance Ige Distance ic Spacing	Tinst Cor Corin Sor, II Sor, I Smin, II; Smin, L	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120	M10 ≤ 2 (for shear	≤ 2 loads perpe	≤ 2 ndicular 60 250 250 100	≤ 2	≤ 2	≤2
Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp Table C10	orque distance lge Distance ic Spacing pacing	Tinst Cor Corin Sor, II Sor, I Smin, II; Smin, L	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear	≤ 2 loads perpe he edge She	≤ 2 ndicular 60 250 250	≤ 2 to the free	≤ 2 edge: c _{cr} =	≤ 2 250)
Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp Table C10	orque distance lge Distance ic Spacing bacing 1: Reductio Tension load	Tinst Cor Cmin Sor, II Sor, I Smin, II; Smin, I	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120	M10 ≤ 2 (for shear Chors at t	≤ 2 loads perpe he edge She ree edge	≤ 2 ndicular 60 250 250 100	≤ 2 to the free Parallel to	≤ 2 edge: c _{cr} =	≤ 2 250) dge
Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp Table C10	orque distance lge Distance ic Spacing bacing 1: Reductio Tension load with c ≥	ion para Tinst Cor Cmin Sor, I Sor, I Smin, I; Smin, 1 On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t ular to the f with c ≥	≤ 2 loads perpe he edge She ree edge αedge, v⊥	≤ 2 ndicular 60 250 250 100	≤ 2 to the free Parallel to	≤ 2 edge: c _{cr} = the free en vith c ≥	≤ 2 250) dge αedge, V II
Anchor size Installation to Char. Edge o Minimum Ed Characterist Minimum Sp Table C10	orque distance lge Distance ic Spacing bacing 1: Reductio Tension load with c ≥ 60	ion para Tinst Cor Corin Sor, I Sor, I Sor, I Smin, I; Smin, 1 On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear chors at t ular to the f with c \geq 60	≤ 2 loads perpe he edge She ree edge α _{edge} , v⊥ 0,40	≤ 2 ndicular 60 250 250 100	≤ 2 to the free Parallel to	≤ 2 edge: $c_{cr} =$ the free er vith $c \geq 60$	≤ 2 250) dge αedge, ∨ II 0,40
Anchor size Installation to Char. Edge of Minimum Ed Characterist Minimum Sp Table C10	orque distance lge Distance ic Spacing bacing 1: Reductio Tension load with c ≥	ion para Tinst Ccr Cmin Scr. II Scr. I Smin. II: Smin. Δ On factor αedge, N 1,00 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	M8 ≤ 2 120 single and Perpendict	M10 ≤ 2 (for shear chors at t ular to the f with c \geq 60 250	≤ 2 loads perpe he edge She ree edge α _{edge, V1} 0,40 1,00	≤ 2 ndicular 60 250 250 100	≤ 2 to the free Parallel to	≤ 2 edge: c _{cr} = the free en vith c ≥	≤ 2 250) dge αedge, V I

and the second	a distant of the second second	Contraction of the Second Second		under ter	and the second sec	1				P. A. 1.	9.5955
Anch	nor position p			_	1	Anch				dicular to hor.	1
	with c ≥	with s		Zg II, Ň	1		1 * 1	with		with s ≥	αg 1, N
	60	100		1,00		•	-	60		100	2,00
	120	250		2,00		- 1	_	120		250	2,00
Table C103:	Factors fo		parallel to		ear load	_	nobo		ition por	pendicular to h	or loint
ALC: NO. 1	Alichi	with c		1		A	nunu	-	with c ≥	with s ≥	1
Shear load		60	100		the second se	_	-	11	60	100	α _{g⊥,v⊥} 0,40
perpendicular to the free		250	100				-	• -	250	100	1,00
edge		250	250					1 -	250	250	2,00
		with c							with c ≥	with s ≥	α(g 1, V 1)
Shear load		60	100	ang in		-			60	100	0,40
parallel to the		120	100				1	-	120	100	1,00
free edge		120	250			0.00		1 -	120	250	2,00
Table C104:	Character	ietic vali	ies of ten	eion and	choor	load	1 roe	ieta	1000		
Table CT04.	Cilaracter	ISUC VAIL	les of ten		And And And And	_				r and s ≥ s _{cr}	
		-		onara	atomotio i		Jse ci			and o - ocr	
	see.	Effective Anchorage depth				Ť	196 0	Juan			d/d
	slee	ora		d/d					w/d		w/d
Anchor size	ad s	de				_	_		w/w	-	w/w
Anonor size	rate	Α̈́Ψ			10000						All
	Perforated sleeve	1.1	40°C/24°C	80°C/50°C	120°C/72	2.0.4	40°C/	24°C	80°C/50°	C 120°C/72°C	temperatur ranges
		het	N	JRK.b = NRK.p	2)			N	NRK.b = NR	2) 3k,p	VFIK.b
		[mm]		1		_		(N]	-		
			ed mean c	ompressi	ve stren	gth	$f_b \ge 1$	2 N/	mm ^{2 1)}		
M8	SH 12	80				-					
M8 / M10/ IG-M6	SH 16	≥ 85	0,6	0,6	0,6		0,	6	0,6	0,6	3,5
M12 / M16 / IG-M8 / IG-M1		≥ 85					÷				
 For lower corwith higher st with higher st NRK.b.c = NRK.p Table C105: 	rengths, the s	hown value VRK.c±acc	es are valid v ording to An	without conv inex C 3	version.						
Ancho	r size	hef	δN/N	16		δN	_		/V	δν0	δ∨∞
		[mm]	[mm/kN]	[m	m]	[m	m]	[mn	n/kN]	[mm]	[mm]
M8 – 1 IG-M6		all	0.13	0.13*N	DE / 35	2*5	IN O	0	,55	0,55*V _{Rk} / 3,5	1,5*8v0
		all	0,10	0,1014	nk / 0,0	20	- 0FIG	0	31	0,31*VRk/3,5	1,5*8vo
IG-M6 M1	- M10	all	0,13	0,13*N	rk / 3,5	2*8	SNO -		,55 ,31	0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5	
Injection systemasonry	em EJOT Mi	ultifix Vin	ylester / So	ormat ITH	Vinyles	ter f	or			0.00	
Performances Group factors,					nts					Annex C	32

Brick type			Hollow cla Doppio Ur					1	
Density	p [kg/dr		≥ 0,90						
Normalised mean	f _b [N/mr		≥ 28					220	10
compressive strenght	and the second second	and the second				10	262		
Conversion factor for low strengths	er compre	essive	(f _b / 28) ^{0,5}	0,1≥	-				144
Code			EN 771-1:	2011+A1:20	015			and the second	
Producer (Country)			e.g. Wiene	erberger (IT))			and the second second	
Brick dimensions	[mm]		250 x 120	x 120			a par		
Drilling method		-	Rotary dril	ling					
11	26 9		2	50			- - -		
Table C107: Installa					M12	M16	4	IG-M8	IG-M10
Table C107: Installa Anchor size	tion para	[-]	M8	50 M10 ≤ 2	<u>M12</u> ≤2	<u>M16</u> ≤ 2	IG-M6 ≤ 2	IG-M8 ≤ 2	IG-M10 ≤ 2
Table C107: Installa			M8 ≤ 2	M10	≤2	≤ 2	IG-M6 ≤ 2	≤ 2	≤ 2
Table C107: Installa Anchor size Installation torque	tion para	[-] [Nm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2	IG-M6 ≤ 2	≤ 2	≤ 2
Table C107: Installar Anchor size Installation torque Char. Edge distance Minimum Edge Distance	tion para	[-] [Nm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular	IG-M6 ≤ 2	≤ 2	≤ 2
Table C107: Installa Anchor size Installation torque Char. Edge distance	tion para Tinst Cer Cmin	[-] [Nm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular 100	IG-M6 ≤ 2	≤ 2	≤ 2
Table C107: Installar Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Cer Cmin Ser, II	[-] [Nm] [mm] [mm] [mm]	M8 ≤ 2	M10 ≤ 2	≤2	≤ 2 endicular 100 250	IG-M6 ≤ 2	≤ 2	≤2
Table C107: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	Tinst Cer Cmin Scr, II Ser, ⊥ Smin, II; Smin, ⊥	[-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120	M10 ≤2 (for shear le	≤ 2 bads perpo	≤ 2 endicular 100 250 120 100	IG-M6 ≤ 2	≤ 2	≤ 2
Table C107: Installar Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	Tinst Cer Cmin Ser, II Ser, ⊥ Smin, II; Smin, ⊥	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear le	≤ 2 bads perpo ne edge Sh	≤ 2 endicular 100 250 120	IG-M6 ≤ 2 to the free	≤ 2 e edge: c _{cr} =	≤ 2 = 250)
Table C107: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C108: Reduction Tension load	tion para Tinst Cer Cmin Ser, Ⅱ Ser, ⊥ Smin, Ⅱ; Smin, ⊥ Con facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear le chors at the ular to the fr	≤ 2 bads perpo ne edge Sh ee edge	≤ 2 endicular 100 250 120 100 ear load	IG-M6 ≤ 2 to the free	≤ 2 e edge: c _{cr} =	≤ 2 250)
Table C107: Installar Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C108: Reduction Tension load with c ≥	tion para Tinst Cer Cmin Ser, II Ser, ⊥ Smin, II; Smin, ⊥ con facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear le chors at the ular to the fr with c ≥	≤ 2 pads perpo ne edge Sh ee edge αedge, v.	≤ 2 endicular 100 250 120 100 ear load	IG-M6 ≤ 2 to the free Parallel	≤ 2 e edge: c _{cr} = to the free e with c \geq	cdge αedge, V II
Table C107: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C108: Reduction Tension load	tion para Tinst Cer Cmin Scr, II Ser, ⊥ Smin, I; Smin, ⊥ con factor αedge, r 1,00	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear le chors at the ular to the fr	≤ 2 pads perpo ne edge Sh ee edge α _{edge} , ν 0,50	≤ 2 endicular 100 250 120 100 ear load	IG-M6 ≤ 2 to the free	≤ 2 e edge: c _{cr} =	≤ 2 = 250) dge αedge, ∨ ⊪ 1,00
Table C107: Installar Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C108: Reduction Tension load •	tion para Tinst Cer Cmin Ser, II Ser, ⊥ Smin, II; Smin, ⊥ con facto	[-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 2 120 single and	M10 ≤ 2 (for shear left chors at the ular to the fr with c \geq 100	≤ 2 pads perpo ne edge Sh ee edge αedge, v.	≤ 2 endicular 100 250 120 100 ear load	IG-M6 ≤ 2 to the free Parallel	≤ 2 e edge: $c_{cr} =$ to the free e with $c \geq$ 100	≤ 2 = 250) dge αedge, v ⊪

Table C110:	nor position p with c ≥	parallel to I				_				
Table C110: Shear load						Anchor p			licular to hor.	joint
Table C110: Shear load	100	with s		g II, N	100		with o		with s ≥	αg 1, N
Shear load	100	100		,00			100		120	2,00
Shear load	120	250	2	2,00	5 a		120)	120	2,00
a later that	Factors for	or ancho	r groups u	inder she	ear load	±				
a canto de tite	Anch	or position	parallel to	hor. joint		Anche	or pos	ition perp	endicular to h	nor. joint
and the second family of the	1.00	with c	≥ with s	≥ agii,	Ŷ.L		1	with c ≥	with s ≥	αg⊥v⊥
perpendicular		100	100	1,0	0		-	100	100	1,00
to the free edge	1000	250	250	2,0	0			250	120	2,00
Shear load	1000	1 with c	≥ with s	≥ α _g	V II	1	1	with c ≥	with s ≥	ag 1,V II
parallel to the	1 20	100	100	1,0		1		100	100	1,00
free edge	-	120	250	2,0				120	120	2,00
Table C111:	Character	detie velu		1		land ro	nietor		-	1 246-2
Table CTTT:	Character	ISUC VAIL	les or ten						and black	
	1.0.1			Charac	teristic				and $s \ge s_{cr}$	
	e				_	Use	conditi	on	1	-2021
	eev	Effective Anchorage depth		d/d				w/d		d/d w/d
wantan	d Si	ffeo cho dep		ara				w/w		w/w
Anchor size	ate	An			1		- 1	1		All
	Perforated sleeve		40°C/24°C	80°C/50°C	120°C/7	2°C 40°C	/24°C	80°C/50°C	120°C/72°C	temperatur ranges
	L.	het	N	Rk,b = NRk,p	2)		N		2) (p	VRk,b ²⁾
	÷	[mm]				10	kN]			
		Normalis	ed mean co	ompressiv	ve stren	gth f _b ≥	28 N/	nm ^{2 1)}		
M8	SH 12	80							-	
MO / MIO/	SH 16	≥ 85	1,2	1,2	0,9		.2	1,2	0,9	
M8 / M10/ IG-M6										2,5
	SH 20	≥ 85	~~~=	137	P.C.					2,5
IG-M6 M12 / M16 / IG-M8 / IG-M ¹⁾ For lower co with higher s ²⁾ N _{Rk,b,c} = N _{Rk}	mpressive stre trengths, the s	engths resis shown value = V _{Rk,c} ⊥acc	tances must es are valid w	be multiplie	ed by the					
IG-M6 M12 / M16 / IG-M8 / IG-M ¹⁾ For lower co with higher s ²⁾ N _{Rk,b,c} = N _{Rk} , Table C112:	The second secon	engths resis shown value = V _{Rk,c} ⊥acc	tances must es are valid w	be multiplie	ed by the ersion.		on facto			
IG-M6 M12 / M16 / IG-M8 / IG-M ¹⁾ For lower co with higher s ²⁾ N _{Rk,b,c} = N _{Rk} ,	The second secon	engths resis shown value = V _{Rk,c} ⊥acc nents	tances must es are valid w ording to Ani	be multiplie vithout conv nex C 3	ed by the ersion.	conversio	on facto δν	or accordir	ng to Table C1	06. For stone
IG-M6 M12 / M16 / IG-M8 / IG-M ¹⁾ For lower co with higher s ²⁾ N _{Rk,b,c} = N _{Rk} Table C112: Ancho M8 -	mpressive stre trengths, the s oc and VRkell = Displacer or size M12 /	engths resis shown value = V _{Rk,c} ± acc nents hef	tances must es are valid w ording to An <u>ðn / N</u> [mm/kN]	be multiplie ithout conv nex C 3	ed by the ersion. 10 m]	conversio ∂N∞ [mm]	on facto δν [mn	/ V n/kN]	ng to Table C11	06. For stone 8v∞ [mm]
IG-M6 M12 / M16 / IG-M8 / IG-M ¹⁾ For lower co with higher s ²⁾ N _{Rk,b,c} = N _{Rk} Table C112: Ancho	ID SH 20 mpressive strettrengths, the strengths, the strettrengths, the strettrengths, the strettrengths, t	engths resis shown value = V _{Rk,c} ± acc nents hef [mm]	tances must es are valid w ording to Ani δN / N	be multiplie rithout conv nex C 3 δN	ed by the ersion. 10 m]	conversio ∂N∞	on facto 8v [mn 0,	/ V n/kN] 55	ng to Table C11 δνο [mm]	06. For stone <u>8v∞</u> [mm] 1,5*δvo

Brick type				Hollow cla Coriso WS						
Insulationma	aterial		_	Rock woo				-	-	
Density		p [kg/dr	n ³ 1	≥ 0,55			0		1000	
Normalised compressive		f _b [N/mr	21.1	≥ 6				100		
Conversion strengths	factor for lowe	er compre	essive	(f _b / 6) ^{0,5} ≤	1,0					
Code				EN 771-1:	:2011+A1:20	015				
Producer (C	ountry)		-	e.g. Unipo						
Brick dimens	sions	[mm]		248 x 365	x 249					
Drilling meth	lod	-		Rotary dri	lling					
						-[H]	8			
Table C11	4: Installat	14	16 7		365		8			
Table C11 Anchor size	4: Installat	-			365 M10	M12	M16	IG-M6	IG-M8	IG-M10
Anchor size Installation t	orque	-	ameter [-] [Nm]	r 	M10 ≤ 5	≤ 10	<u>M16</u> ≤ 10	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge	orque distance	ion para	ameter [-] [Nm] [mm]	r 	M10	≤ 10	M16 ≤ 10 ndicular f	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge	orque	tion para	ameter [-] [Nm] [mm] [mm]	r 	M10 ≤ 5	≤ 10	M16 ≤ 10 ndicular 1 50	≤ 5	≤ 5	-
Anchor size Installation t Char. Edge	orque distance Ige Distance	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	r 	M10 ≤ 5	≤ 10	M16 ≤ 10 ndicular 1 50 250	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge Minimum Ec	orque distance Ige Distance	Tinst Cor Cmin Sor, II Sor, 1	ameter [-] [Nm] [mm] [mm]	r 	M10 ≤ 5	≤ 10	M16 ≤ 10 ndicular 1 50	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge Minimum Ec	orque distance Ige Distance ic Spacing	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	r 	M10 ≤ 5	≤ 10	M16 ≤ 10 ndicular 1 50 250	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge Minimum Ec Characterist Minimum Sp	orque distance Ige Distance ic Spacing	tion para Tinst Ccr Cmin Scr, ⊥ Smin, II; Smin, ⊥	ameter [-] [Nm] [mm] [mm] [mm] [mm]	r <u>M8</u> ≤ 5 120	M10 ≤5 (for shear lo	≤ 10 bads perpe	M16 ≤ 10 ndicular 1 50 250 250 250 50	≤ 5	≤ 5	≤ 5
Anchor size Installation t Char. Edge Minimum Ec Characterist Minimum Sp Table C11	orque distance lge Distance ic Spacing pacing	tion para Tinst Ccr Cmin Scr, ⊥ Smin, II; Smin, ⊥	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 5 120	M10 ≤ 5 (for shear lo	≤ 10 pads perpe	M16 ≤ 10 ndicular 1 50 250 250	≤5 to the free	≤ 5 edge: c _{cr} =	≤ 5 250)
Anchor size Installation t Char. Edge Minimum Ec Characterist Minimum Sp Table C11	orque distance lge Distance ic Spacing bacing 5: Reducti Tension load	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, ⊥ on facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	M8 ≤ 5 120	M10 ≤ 5 (for shear lo chors at th ular to the fr	≤ 10 pads perpe ne edge She ee edge	M16 ≤ 10 ndicular 1 50 250 250 250 50	≤ 5 to the free Parallel to	≤ 5 edge: c _{cr} =	≤ 5 250) dge
Anchor size Installation t Char. Edge Minimum Ec Characterist Minimum Sp Table C11	orque distance lge Distance ic Spacing bacing 5: Reducti Tension load with c ≥	tion para Tinst Ccr Cmin Scr, 11 Scr, 1 Smin, 1 Smin, ⊥ on facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	M8 ≤ 5 120	M10 ≤ 5 (for shear lo chors at the ular to the fr with c ≥	≤ 10 pads perpe ne edge She ee edge αedge, v⊥	M16 ≤ 10 ndicular 1 50 250 250 250 50	≤ 5 to the free Parallel to	≤ 5 edge: c _{cr} = o the free e with c \geq	≤ 5 250) dge α(adge, ∨ II
Anchor size Installation t Char. Edge Minimum Ec Characterist Minimum Sp Table C11	orque distance lge Distance ic Spacing bacing 5: Reducti Tension load	tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, ⊥ on facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for	M8 ≤ 5 120	M10 ≤ 5 (for shear lo chors at th ular to the fr	≤ 10 pads perpe ne edge She ee edge	M16 ≤ 10 ndicular 1 50 250 250 250 50	≤ 5 to the free Parallel to	≤ 5 edge: c _{cr} =	≤ 5 250) dge

Table C116: Anch	nor position p	Constant of Arthough Martin			and a state of the second s	1.	or po	sition peri	pendi	cular to hor.	ioint
1	with c ≥	with s		Clá II, Ň	1	_ 1	-	vith c ≥	-	with s ≥	αq 1, N
	50	50		1,50	11 - 3		1	50		50	1,00
	120	250)	2,00		-	1	120		250	2,00
Table C117:	Factors fo	or ancho	r aroups	under she	ear load	b		_			
			parallel to		1	_	nchor	position r	oerpe	endicular to h	or, joint
Shear load		, with c			Ŷ.L			with o	_	with s ≥	α _{g⊥,V⊥}
perpendicular	-	50	50			-	10	50	1 - 1	50	0,40
to the free		250	50	1,0	0			250)	50	1,20
edge		250	250		0			250		250	2,00
Shear load	lel to the	with c	and the stand of			-	4	with c		with s ≥	α/g ⊥,V II
parallel to the			50		_			50		50	1,00
free edge	13-0	1 120	250	2,0	0		Les Y	120)	250	2,00
Table C118:	Character	istic val	ues of ter	nsion and	shear	load	resi	stances		10 A. 10	
				Charac	teristic l	Resis	stance	es with ca	≥ c _{cr}	and $s \ge s_{cr}$	
						U	se co	ndition			
	Perforated sleeve	Effective Anchorage depth		d/d					/d		d/d w/d
Anchor size	ba	Effe de de	-					W	/w	-	w/w
	orat	- <	1000/0400	0000/5000	10000/7	200 4	00010	100 0000	Enec	120°C/72°C	All temperatur
	erio	1.1	40-0/24-0	80-0/50-0	120-077	204	0.0/2	4-0 00-0/	50-0	120-0/12-0	ranges
	a	het	N	NRK.D = NRK.D	2)		-	NRk,b =	Nek	2)	VRk,b ²⁾
		[mm]					[k				
		Normali	sed mean a	compressi	ve stren	ngth	$f_b \ge 6$	N/mm ² 1)		
M8	SH 12	80			10.00						
M8 / M10/ IG-M6	SH 16	≥ 85	1,5	1,5	1,5		1,5	e 1	,5	1,5	5,0
M12 / M16 / IG-M8 / IG-M1		≥ 85									
 For lower cor with higher sl NRK.b.c = NRK.p Table C119: 	c and V _{Rk,c II} =	hown value V _{Rk,c} ⊥acc	es are valid v	without conv		conve	ersion	factor acc	ordin	g to Table C1	13. For stone
		hef	δN/N	δΝ	0	δN	80	δv / V	T	δνο	δV∞
Ancho	r size	[mm]				[mr		[mm/kN]		[mm]	[mm]
M8 – 1 IG-M6		all	0,13	0,13*N		2*8		0,55	0	,55*V _{Rk} / 3,5	
MI	the second se	all	0,10	0,10 14	HK / 0,0	2 01		0,31	0	,31*V _{Rk} / 3,5	1.5*8vo
Injection syste		,	ylester / Se	ormat ITH	Vinyles	ter fo	or	0,31	1.0	,3 L_V Bk / 3,5	<u> </u> 1,5°ðV
masonry	hollow Cla	v brick C	orioo WCO	7 with incu	lation			-		Annex C	36

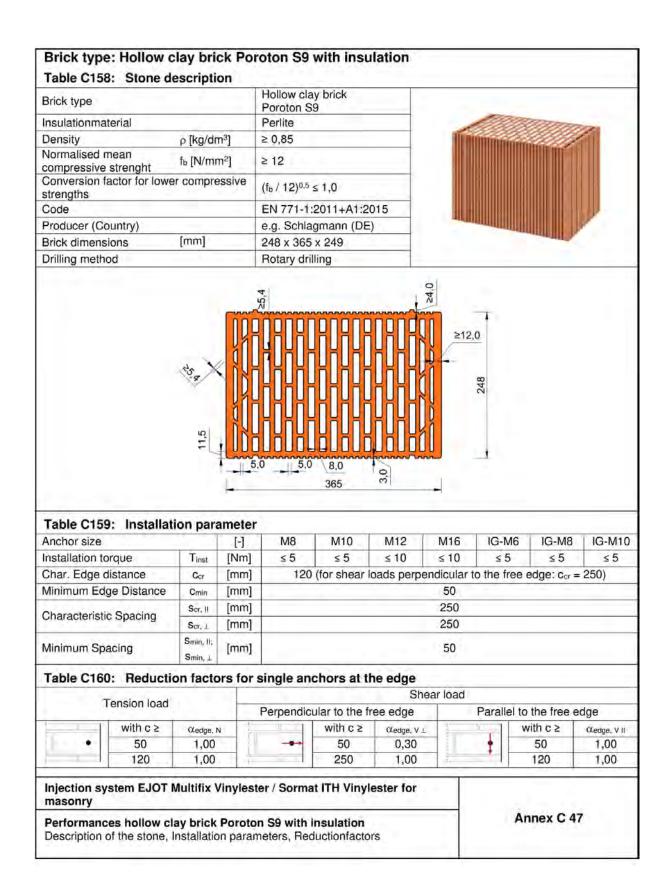
Brick type			Hollow	clay brick T7						
Insulation ma	aterial		Rock we				-	-	-	
Density		p [kg/dm ³]	≥ 0,59				llen			1
Normalised r compressive		f _b [N/mm ²]	≥ 8				Um	1		
Conversion f strengths	actor for lower	r compressive	e (f _b / 8) ^{0,5}	⁵ ≤ 1,0						3
Code			EN 771	-1:2011+A1:2	2015		annin-			
Producer (Co	ountry)		e.g. Wie	enerberger (D	E)		41m		1.1	
Brick dimens	ions	[mm]	248 x 3	65 x 249			1	1000		
Drilling meth	bd		Rotary of	drilling	-					
						117	-			
		153	13 13	365	Ц		1			
	: Installati	-	er		M10	M12	M16	IG-M6	IG-M8	IG-M10
Anchor size		-			M10 ≤ 5	≤ 10	<u>M16</u> ≤ 10	≤ 5	IG-M8 ≤ 5	IG-M10 ≤ 5
Anchor size Installation to Char. Edge d (under fire co	orque istance nditions)	on paramet	er [-] [Nm]) [mm]	M8 ≤ 5	≤5	≤ 10	≤ 10 120 (2 ha ndicular to	≤ 5	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg	orque istance nditions) je Distance	on paramet	er [-] [Nm]) [mm]	M8 ≤ 5	≤5	≤ 10 s perpen	≤ 10 120 (2 ha ndicular to 50	≤ 5 a) o the free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic	orque istance nditions) je Distance : Spacing	on paramet	er [-] [Nm]) [mm] 	M8 ≤ 5	≤5	≤ 10 s perper	≤ 10 120 (2 ha dicular to 50 250 (4 ha	sthe free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co	orque istance nditions) le Distance : Spacing nditions)	on paramet	er [-] [Nm]) [mm]) [mm]) [mm]	M8 ≤ 5 (for she	≤5	≤ 10 s perper	≤ 10 120 (2 ha ndicular to 50	sthe free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp	orque istance nditions) le Distance : Spacing nditions)	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, II; (Scr,fi Scr, ⊥; (Scr,fi Smin, II; Smin	(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	(for she	≤ 5 ar loads	≤ 10 s perper	≤ 10 120 (2 ha dicular to 50 250 (4 ha 250 (4 ha	sthe free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122	orque istance nditions) le Distance : Spacing nditions) acing 2: Reductio	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, II; (Scr,fi Scr, ⊥; (Scr,fi Smin, II; Smin	(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)	(for she	≤ 5 ar loads	≤ 10 s perper	≤ 10 120 (2 h dicular to 50 250 (4 h 250 (4 h 50	sthe free e	≤ 5	≤ 5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122	orque istance nditions) le Distance : Spacing nditions) acing	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, II; (Scr,fi Scr, ⊥; (Scr,fi Smin, II; Smin	er [·] [Nm]) [mm]) [mm]) [mm] 	(for she	≤ 5 ar loads the edg	≤ 10 s perpen ge Shear	≤ 10 120 (2 h _c adicular to 50 250 (4 h _c 50	≤ 5 et) o the free e et) et) arallel to th	≤ 5 edge: c _{cr} e free ed	≤ 5 = 250)
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122	orque istance nditions) e Distance : Spacing nditions) acing 2: Reductio Fension load with c ≥	on paramet Tinst Cor; (Cor,ti Corin Sor, II; (Sor,fi Sor, L; (Sor,fi Sorin, II; Smin on factors fo αedge, N	er [·] [Nm]) [mm]) [mm]) [mm] 	M8 ≤ 5 (for she Inchors at the with c ≥	≤ 5 ar loads the edg free edg αedg	≤ 10 s perpen ge Shear ge	≤ 10 120 (2 h _c adicular to 50 250 (4 h _c 50	≤ 5 (at)	≤ 5 edge: c _{or} e free ed n c ≥	≤ 5 = 250) ge α _{edge} , v ⊪
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, II; (Scr,fi Scr, ⊥; (Scr,fi Smin, II; Smin on factors for αedge, N 1,00	er [·] [Nm]) [mm]) [mm]) [mm] 	M8 ≤ 5 (for she anchors at the ticular to the with c ≥ 50	≤ 5 ar loads the edg free edg α _{edg} 0,3	≤ 10 s perpen ge Shear ge 35	≤ 10 120 (2 h _c adicular to 50 250 (4 h _c 50	≤ 5 (at)	≤ 5 edge: c _{cr} e free ed n c \geq 0	≤ 5 = 250) ge αedge, V II 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122	orque istance nditions) e Distance : Spacing nditions) acing 2: Reductio Fension load with c ≥	on paramet Tinst Cor; (Cor,ti Corin Sor, II; (Sor,fi Sor, L; (Sor,fi Sorin, II; Smin on factors fo αedge, N	er [·] [Nm]) [mm]) [mm]) [mm] 	M8 ≤ 5 (for she Inchors at the with c ≥	≤ 5 ar loads the edg free edg α _{edg} 0,3	≤ 10 s perpen ge Shear ge	≤ 10 120 (2 h _c adicular to 50 250 (4 h _c 50	≤ 5 (at)	≤ 5 edge: c _{or} e free ed n c ≥	≤ 5 = 250) ge α _{edge} , v ⊪
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C12:	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50	On paramet Tinst Ccr; (Ccr,ti Cmin Scr, tl; (Scr,ti Scr, tl; (Scr,ti Smin, tl; Smin On factors for αedge, N 1,00 1,00	er [-] [Nm]) [mm] 	M8 ≤ 5 (for she inchors at the ticular to the with c ≥ 50 250	≤ 5 ar loads the edg free edg αedg 0,; 1,1	≤ 10 s perpen ge Shear ge 35	≤ 10 120 (2 h _c adicular to 50 250 (4 h _c 50	≤ 5 (at)	≤ 5 edge: c _{cr} e free ed n c \geq 0	≤ 5 = 250) ge αedge, V II 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C12: Table C12:	orque istance nditions) le Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, It; (Scr,fi Scr, It; (Scr,fi Smin, It; Smin on factors for αedge, N 1,00 1,00 1,00 for anchor g	er [-] [Nm]) [mm]) [mm]) [mm]] [mm] or single a Perpend	M8 ≤ 5 (for she inchors at the ticular to the with c ≥ 50 250	≤ 5 ar loads the edg free edg @edg 0,1 1,1	≤ 10 s perpen ge Shear ge 35 00	≤ 10 120 (2 h, adicular to 50 250 (4 h, 50 load Pa	≤ 5 (at)	≤ 5 edge: c _{cr} e free ed n c ≥ 0 20	≤ 5 = 250) ge α _{edge} , ∨ ⊪ 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C122 Table C123	orque istance nditions) le Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120 3: Factors 1	on paramet Tinst Ccr; (Ccr,ti Cmin Scr, It; (Scr,fi Scr, It; (Scr,fi Smin, It; Smin on factors for αedge, N 1,00 1,00 1,00 for anchor g	er [·] [Nm]) [mm] 	M8 ≤ 5 (for she anchors at the ticular to the with c ≥ 50 250 der tension	≤ 5 ar loads the edg αedg 0,3 1,1 1 load	≤ 10 s perpen ge Shear ge e. v⊥ 35 00	≤ 10 120 (2 h, adicular to 50 250 (4 h, 50 load Pa	$\frac{1}{2} \leq 5$ at) b the free e at) arallel to th with 5 12	≤ 5 edge: c _{cr} e free ed 1 c ≥ 0 20 o hor. joi	≤ 5 = 250) ge α _{edge} , ∨ ⊪ 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C12: Table C12:	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120 3: Factors f nchor position	On paramet Tinst Ccr; (Ccr, ii Cmin Scr, II; (Scr, fii Scr, L; (Scr, fii Smin, II; Smin On factors for αedge, N 1,00 1,00 1,00 1,00 1,00 1,00 1,00	er [·] [Nm]) [mm] 	M8 ≤ 5 (for she anchors at the ticular to the with c ≥ 50 250 der tension	≤ 5 ar loads the edg free edg @edg 0,1 1,1	≤ 10 s perper ge Shear ge e. v⊥ 35 00 wit	≤ 10 120 (2 h, adicular to 50 250 (4 h, 50 load Pa	$\frac{1}{2} \leq 5$ at) the free events arallel to th arallel to th $\frac{1}{5}$ endicular t	≤ 5 edge: c _{cr} e free ed 1 c ≥ 0 20 o hor. joi	≤ 5 = 250) = 250) ge αedge, ∨ II 1,00 1,00
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Sp Table C12: Table C12: An	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with $c \ge$ 50 120 3: Factors function with $c \ge$ with c >	On paramet Tinst Ccr. (Ccr.ti Cmin Scr. II: (Scr.fi Sor, Li, (Scr.fi Smin, II: Smit On factors for αedge, N 1,00 1,00 parallel to ho with s ≥	er [-] [Nm]) [mm] 	M8 ≤ 5 (for she anchors at 1 ticular to the with c ≥ 50 250 der tension	≤ 5 ar loads the edg free edg α _{edg} 0,3 1,1 1,0 Anch	≤ 10 s perpen ge Shear ge e. ∨⊥ 35 00 mor posit	≤ 10 120 (2 h, ndicular to 50 250 (4 h, 50 10ad Pa tion perpendent th c ≥	arallel to the with 5 12 condicular t with s 3 12 condicular t	≤ 5 edge: c _{cr} e free ed 1 c ≥ 0 20 o hor. joi	≤ 5 = 250)

	Anch	and a second	r groups i parallel to	a series and a series of the series of	ear Ioau		or nos	ition perm	endicular to	hor ioint
0	Anch	with c			97	Anon		with $c \ge$	with s ≥	
Shear load perpendicular		50	50	0,6	the second se			50	50	0,40
to the free		250	50	1,5			-	250	50	1,00
edge		250	250				1-	250	250	2,00
Shear load		with c	≥ with s			17	1	with c ≥	with s ≥	CLQ L.VII
parallel to the	3.0	50	50	2,0	0	1		50	50	1,20
free edge		120	250	2,0	0	- 1		120	250	2,00
Table C125: C	haracter	istic val	ues of ten	sion and	shear l	oad re	sista	nces		
		100.00		Charac	teristic R	esistan	ces w	ith c≥ c _{cr}	and s ≥ s _{cr}	
						Use o	conditi	ion		Y
	d sleeve	age						w/d		d/d
	a ated sleev	Effective Anchorage depth		d/d				w/w		w/d w/w
Anchor size	Perforated sleeve	And		E	1			1	1	All
	ertors		40°C/24°C	80°C/50°C	120°C/72	°C 40°C	c/24°C	80°C/50°C	120°C/72°C	
		hei	N	Rk,b = NRk,p	2)		1	NRK,b = NRK	2) .p	VER.D
		[mm]					[kN]			
255	(Particular)		sed mean o	compressi	ve stren	gth f _b ≥	8 N/n	nm ^{2 1)}	1	
M8	SH 12	80								1.00
M8 / M10/ IG-M6	SH 16	≥ 85	2,0	2,0	1,5		2,0	2,0	1,5	3,0
M12 / IG-M8	SH 20	≥ 85	-,		1100		10	-,0	110	
The second se										-
	SH 20 ressive stre					onversio	on fact	or accordin	g to Table C1	4,5 20. For stone
M16 / IG-M10 ¹⁾ For lower comp with higher strer ²⁾ NRk0,c = NRkp.c & Table C126:	SH 20 ressive stre rigths, the s	ngths resis hown valu VRk,c±aco ements	es are valid v cording to An	vithout conv nex C 3	ersion.					20. For stone
 For lower comp with higher stren N_{Rk,b,c} = N_{Rk,p,c} a 	SH 20 ressive strengths, the s and V _{Rk,c II} = Displac	ngths resis hown valu VRk,c±aco ements het	es are valid v cording to An δN / N	vithout conv nex C 3	ersion.	δN∞	δν	//V	δνο	20. For stones δv∞
 For lower comp with higher stree NRkb.c = NRkp.c a Table C126: Anchor s 	SH 20 ressive strengths, the s and VBkcH = Displac	ngths resis hown valu VRk,c±aco ements	es are valid v cording to An δN / N	vithout conv nex C 3	ersion.		δ\ [mr	/ / V n/kN]	δνα [mm]	20. For stones δγ∞ [mm]
 For lower comp with higher streer NRkb,c = NRkp,c a Table C126: Anchor s M8 – M1 	SH 20 ressive strengths, the s and V _{Bkc II} = Displac ize 2 /	ngths resis hown valu VRk,c±aco ements het	es are valid v cording to An <u> </u>	vithout conv nex C 3 δι [m	ersion. IO m]	δN∞ [mm]	δ\ [mr	/ / V n/kN]	δνο	20. For stones δγ∞ [mm]
 For lower comp with higher stree NRkb.c = NRkp.c a Table C126: Anchor s 	SH 20 ressive strengths, the s and V _{Bkc II} = Displac ize 2 /	engths resis hown value Vek,c⊥aco ements het [mm]	es are valid v cording to An δN / N	vithout conv nex C 3	ersion. IO m]	δN∞	δν [mr 0	//V n/kN] ,55 (δνα [mm]	20. For stones δV∞ [mm] 5 1,5*δvo
 For lower comp with higher streer NRKDJC = NRKDJC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 	SH 20 ressive strengths, the s and V _{Bkc} it = Displac ize 2 / //10	ngths resis hown valu VRK,c±aco ements het [mm] all all	es are valid v cording to An δN / N [mm/kN] 0,13	vithout conv nex C 3 δι [m 0,13*N	ersion. IO m] Rk / 3,5	δN∞ [mm] 2*δN0	δ\ [mr 0	//V n/kN] ,55 (,31 (δνο [mm] 0,55*Vek / 3,5	20. For stones δV∞ [mm] 5 1,5*8vo 5 1,5*8vo
 For lower comp with higher streer NRKDJC = NRKDJC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 	SH 20 ressive strengths, the s and V _{Bkc} it = Displac ize 2 / //10	ements hown value VRK,c+acc ements her [mm] all all istic val E	es are valid v cording to An δ _N / N [mm/kN] 0,13 ues of ten iffecitve	vithout conv nex C 3 [m 0,13*N sion and	ersion. IO m] Rk / 3,5	ბი∞ [mm] 2*ბიი oad re	δν [mr 0 0 sista	//V n/kN] ,55 (,31 (δνο [mm] 0,55*Vek/3,5 0,31*Vek/3,5	20. For stones δV∞ [mm] 5 1,5*8vo 5 1,5*8vo
 For lower comp with higher streer NRkb.c = NRkp.c & Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C 	SH 20 ressive strengths, the s and V _{RkcII} = Displac ize 2 / A10 character Perforat	ngths resis hown value VRK,c±acc ements her [mm] all all istic val ed Anche	es are valid v cording to An δ _N / N [mm/kN] 0,13 ues of ten ffecitve prage depth	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear le	δ∾∞ [mm] 2*δ№0 oad re Chara	δν [mr 0 sistar acteris	/ / V n/kN] ,55 (,31 (nces und	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances Rkb,tt	20. For stones δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 00sure
 For lower comp with higher streer NRk.b.c = NRk.p.c & Table C126: Anchor s M8 – M1 IG-M6 – M 	SH 20 ressive strengths, the s and V _{Bkc} II = Displac ize 2 / A10	ngths resis hown value VRK,c±acc ements her [mm] all all istic val ed Anche	es are valid v cording to An δ _N / N [mm/kN] 0,13 ues of ten ffecitve prage depth her	vithout conv nex C 3 [m 0,13*N sion and	ersion. IO m] Rk / 3,5	δ∾∞ [mm] 2*δ№0 oad re Chara	δν [mr 0 0 sista	// V n/kN] ,55 (,31 (nces und stic Resist NRK,p,fi = Vi	δνο [mm] 0,55*Vek/3,5 0,31*Vek/3,5 der fire exp ances	20. For stone δV∞ [mm] 5 1,5*8vo 5 1,5*8vo
 For lower comp with higher street NRKDC = NRKDC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C Anchor size 	SH 20 ressive stre ogths, the s ind V _{Rkc} ii = Displac ize 2 / /10 character Sleeve	ngths resis hown valu VRK,c ± acc ements her [mm] all all istic val ed Ancho	es are valid v cording to An δ_N / N [mm/kN] 0,13 ues of ten ffecitve prage depth her [mm]	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear le	δ∾∞ [mm] 2*δ№0 oad re Chara	δν [mr 0 sistar acteris	//V n/kN] ,55 (,31 (nces und	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances Rkb,tt	20. For stone: δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 00sure
 For lower comp with higher streer NRKBC = NRKBC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C Anchor size M8 / M10 /IG-M6 M12 / M16 / 	SH 20 ressive strengths, the s and V _{RkcII} = Displac ize 2 / A10 character Perforat	ngths resis hown valu VRK,c + acc ements hef [mm] all all istic val ed Anche	es are valid v cording to An δ _N / N [mm/kN] 0,13 ues of ten ffecitve prage depth her	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear le	δN∞ [mm] 2*δN0 Dad rea Chara NR	δν [mr 0 sistar acteris	/ / V n/kN] ,55 (,31 (nces und stic Resist NRk,p,ti = Vt [kN]	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances Rkb,tt	20. For stone: δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 00sure
 For lower comp with higher streer NRKBJC = NRKBJC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C Anchor size M8 / M10 /IG-M6 M12 / M16 / IG-M8 IG-M10 	SH 20 ressive strengths, the s and Vake II = Displac ize 2 / M10 Perforat sleeve SH 16 SH 20	ngths resis hown valu VRK,c + acc ements hef [mm] all all istic val ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten tfecitve prage depth her [mm] 130	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] shear h	δN∞ [mm] 2*δN0 Dad rea Chara NR	δν [mr 0 0 sistan acteris k,b,# = 1 R60	/ / V n/kN] ,55 (,31 (nces und stic Resist NRk,p,ti = Vt [kN]	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances ances akb,tt R90	20. For stone δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 1,5*δνο 5 8120
 For lower comp with higher streer NRKBC = NRKBC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C Anchor size M8 / M10 /IG-M6 M12 / M16 / 	SH 20 ressive strengths, the s and Vake II = Displac ize 2 / M10 Perforat sleeve SH 16 SH 20	ngths resis hown valu VRK,c + acc ements hef [mm] all all istic val ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten tfecitve prage depth her [mm] 130	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] shear h	δN∞ [mm] 2*δN0 Dad rea Chara NR	δν [mr 0 0 sistan acteris k,b,# = 1 R60	/ / V n/kN] ,55 (,31 (nces und stic Resist NRk,p,ti = Vt [kN]	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances ances akb,tt R90	20. For stone δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 1,5*δνο 5 8120
 For lower comp with higher street NRKBC = NRKPC 2 Table C126: Anchor s M8 – M1 IG-M6 – M M16 Table C127: C Anchor size M8 / M10 /IG-M6 M12 / M16 / IG-M8 IG-M10 	SH 20 ressive strengths, the side vector of the strengths, thes	ements hown value VRK,c + acc ements her [mm] all all istic val ed Anche	es are valid v cording to An δ _N / N [mm/kN] 0,13 ues of ten ffecitve orage depth her [mm] 130 ≥ 130	vithout conv nex C 3 0,13*N sion and F	ersion. 10 m] shear lo 330 ,64	δ _N ∞ [mm] 2*δ _{N0} Oad re: Chara N _R i	δν [mr 0 0 sistan acteris k,b,# = 1 R60	/ / V n/kN] ,55 (,31 (nces und stic Resist NRk,p,ti = Vt [kN]	δV0 [mm] 0,55*VRk / 3,5 0,31*VRk / 3,5 Jer fire exp ances ances akb,tt R90	20. For stone δν∞ [mm] 5 1,5*δνο 5 1,5*δνο 5 1,5*δνο 5 8120

Brick type	1		Hollow cla T8 P	ly brick					
Insulation material			Perlite					-	-
Density	p [kg/dr	n ³ 1	≥ 0,56						
Normalised mean		10.0					1		
compressive strenght	f _b [N/mr		≥ 6						
Conversion factor for low strengths	er compre	essive	$(f_b / 6)^{0.5} \le$	1,0					
Code			EN 771-1	2011+A1:2	2015				
Producer (Country)				erberger (D		1			
Brick dimensions	[mm]		248 x 365		-1				
Drilling method	-		Rotary dri	and the second second	-				
						113 - 8 - 113	248		
	15	36 14		2	6	 ∞†	1		
Table C129: Installa	1	-	-	365		∞¦	1		
Anchor size	1	ameter [-]	M8	<mark>L</mark>	M12	M16	IG-M6	IG-M8	IG-M10
Anchor size Installation torque	1	ameter [-] [Nm]	≤ 4	365 M10 ≤ 4	<u>M12</u> ≤ 10		≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance	Tinst	ameter [-] [Nm] [mm]	≤ 4	365 M10 ≤ 4	M12	M16 ≤ 10 endicular t	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance	Tinst	ameter [-] [Nm] [mm] [mm]	≤ 4	365 M10 ≤ 4	<u>M12</u> ≤ 10	M16 ≤ 10 50	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Cor Cmin Sor, II	ameter [-] [Nm] [mm] [mm] [mm]	≤ 4	365 M10 ≤ 4	<u>M12</u> ≤ 10	M16 ≤ 10 endicular f 50 250	≤ 4	≤ 4	≤ 4
Table C129: Installa Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	Tinst Ccr Cmin Scr, II Scr, I	ameter [-] [Nm] [mm] [mm]	≤ 4	365 M10 ≤ 4	<u>M12</u> ≤ 10	M16 ≤ 10 50	≤ 4	≤ 4	
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	Tinst Cor Cmin Sor, II	ameter [-] [Nm] [mm] [mm] [mm]	≤ 4	365 M10 ≤ 4	<u>M12</u> ≤ 10	M16 ≤ 10 endicular f 50 250	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	Tinst Ccr Cmin Scr, II Scr, L Smin, II; Smin, L	ameter [-] [Nm] [mm] [mm] [mm] [mm]	≤ 4 120	365 M10 ≤ 4 (for shear	M12 ≤ 10 loads perpe	M16 ≤ 10 endicular 50 250 250 50	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	ttion para Tinst Ccr Cmin Scr, ⊥ Scr, ⊥ Smin, I; Smin, ⊥ tion facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	≤ 4 120 single an	365 M10 ≤ 4 (for shear	M12 ≤ 10 loads perpe	M16 ≤ 10 endicular f 50 250 250	≤ 4 to the free o	≤ 4 edge: c _{cr} =	≤ 4 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C130: Reduct	ttion para Tinst Ccr Cmin Scr, ⊥ Scr, ⊥ Smin, I; Smin, ⊥ tion facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for :	≤ 4 120 single an	365 M10 ≤ 4 (for shear	M12 ≤ 10 loads perpe	M16 ≤ 10 endicular 1 50 250 250 50 ear load	≤ 4 to the free of Parallel to	≤ 4 edge: c _{cr} =	≤ 4 250) dge
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C130: Reduct Tension load	ttion para Tinst Ccr Cmin Scr, ⊥ Scr, ⊥ Smin, I; Smin, ⊥	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for :	≤ 4 120 single an	365 M10 ≤ 4 (for shear chors at t	M12 ≤ 10 loads perpe	M16 ≤ 10 endicular 1 50 250 250 50 ear load	≤ 4 to the free of Parallel to	≤ 4 edge: c _{cr} =	≤ 4 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C130: Reduct Tension load	ttion para Tinst Ccr Cmin Scr, ⊥ Smin, I; Smin, ⊥ tion factor	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] ors for :	≤ 4 120 single an	365 M10 ≤ 4 (for shear chors at t ular to the f with c ≥	M12 ≤ 10 loads perpe	M16 ≤ 10 endicular 1 50 250 250 50 ear load	≤ 4 to the free of Parallel to	≤ 4 edge: c _{cr} = the free end the free end the c \geq	≤ 4 250) dge αedge, ∀ II

Anch	or position p	arallel to	hor. joint			Anchor p	ositio	n perper	ndicular to hor.	joint
1	with c ≥	with s	2 0	lg II, N	1990		with	C≥	with s ≥	αg 1, N
	50	50	P = 1	1,30	0.13		50	0	50	1,10
	120	250		2,00	-		12	0	250	2,00
Table C132:	Factors fo	r ancho	r groups i	under sh	ear load	1				
			parallel to				or pos	sition per	pendicular to I	nor. joint
Shear load	-	with c	≥ with s	≥ α _g	LÝ L		- 1	with c ≥	with s ≥	$\alpha_{g \perp, V \perp}$
perpendicular		50	50	0,	40			50	50	0,30
to the free		250	50		35			250	50	1,20
edge		250	250		00			250	250	2,00
Shear load	1	with c	2010 C 11 C 1		I,V II		1	with c ≥	with s ≥	α/g⊥,V II
parallel to the	the		50		70			50	50	1,00
free edge		120	250	2,	00	-	-1	120	250	2,00
Table C133:	Character	istic val	ues of ten	sion and	shear	load re	sista	nces		
			100	Chara	cteristic I	Resistar	ices w	with $c \ge c$	_{cr} and s ≥ s _{cr}	
						Use	condit	lion		
	Perforated sleeve	Effective Anchorage depth		d/d				w/d w/w		d/d w/d w/w
Anchor size	orated	And	40°C/24°C	80°C/50°C	120°C/7	2°C 40°C	2/24°C	80°C/50	C 120°C/72°C	All temperatur
	Perfe	het		18 101				200.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ranges VRk.b ²⁾
		[mm]	N	IRK.b = NRK.	p	_	[kN]	NRK,b = N	Bk.p	V Rk,b
		the second se	sed mean o	omorase	ivo etror			mm ² 1)		
M8	SH 12	80			live Surei	igin ib -				
M8 / M10/ IG-M6	SH 16	≥ 85	1,5	1,5	1.5		1.5	1,5	1,5	4,5
M12 / IG-M8	SH 20	≥ 85	-							
M16 / IG-M10	SH 20	≥ 85	2,5	2,5	2,0		2,5	2,5	2,0	7,0
with higher sl	rengths, the s .c and VRk.c II =	hown value V _{Rk,c} ⊥acc	es are valid v	vithout con		conversi	on fac	tor accord	ing to Table C1	28. For stone
Ancho	reizo	hef	δN/N	δ	NO	ôN∞	8	v/V	δνο	δV∞
		[mm]	[mm/kN]	[m	ım]	[mm]	[m	m/kN]	[mm]	[mm]
M8 – 1 IG-M6	- M10	all	0,13	0,13*N	I _{Rk} / 3,5	2*8N0),55	0,55*V _{Rk} /3,5	
M1	6	all					C),31	0,31*V _{Rk} /3,5	1,5*δvo
Injection system masonry	em EJOT Mi	ıltifix Vin	ylester / So	ormat ITH	Vinyles	ter for			(a	
Performances Group factors,								1	Annex C	40

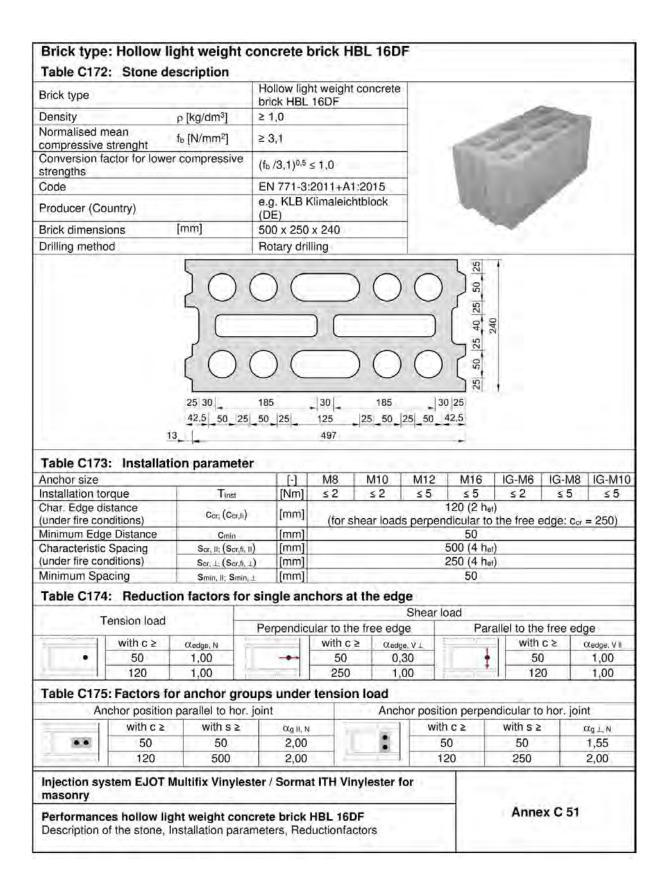
Brick type			Hollow cla	an MZ90-G					
Insulation material		-	Rock woo				-	10	
Density	p [kg/dn	n ³]	≥ 0.68		_	15	120	1	-
Normalised mean		10.5				in.	115	2.2	1
compressive strenght	fь [N/mn		≥ 12				The second		
Conversion factor for lowe strengths	er compre	essive	$(f_b / 12)^{0.5}$	≤ 1,0					
Code			EN 771-1:	2011+A1:20	015	A AL			1
Producer (Country)			e.g. Mein	Ziegelhaus	(DE)	1		-	-
Brick dimensions	[mm]	-	248 x 365		<u> </u>		1		
Drilling method	0.0		Rotary dri	lling	1		1		
		U I				L to			
	13		<u> </u>	17 365		13	4		
Table C136: Installat	1	ameter		17		13			
Anchor size	ion para	ameter	M8	_17 365 M10	M12	M16	IG-M6	IG-M8	IG-M10
Anchor size Installation torque	ion para	ameter [-] [Nm]	M8 ≤ 4	_17 365 	M12 ≤ 10	<u>M16</u> ≤ 10	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance	ion para	ameter [-] [Nm] [mm]	M8 ≤ 4	_17 365 M10	M12 ≤ 10	M16 ≤ 10 ndicular 1	≤ 4	≤ 4	≤ 4
	ion para Tinst Ccr Cmin	ameter [-] [Nm] [mm]	M8 ≤ 4	_17 365 	M12 ≤ 10	M16 ≤ 10 folicular f	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance	ion para Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	M8 ≤ 4	_17 365 	M12 ≤ 10	M16 ≤ 10 10 10 250	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	ion para Tinst Ccr Cmin	ameter [-] [Nm] [mm]	M8 ≤ 4	_17 365 	M12 ≤ 10	M16 ≤ 10 folicular f	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	ion para Tinst Ccr Cmin Scr, II Scr, J Smin, II; Smin, J	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120	17 365 M10 ≤ 4 (for shear le	M12 ≤ 10 pads perper	M16 ≤ 10 ndicular 50 250 250	≤ 4	≤ 4	
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C137: Reduction	ion para Tinst Ccr Cmin Scr, II Scr, J Smin, II; Smin, J	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120	17 365 M10 ≤ 4 (for shear le	M12 ≤ 10 bads perper	M16 ≤ 10 ndicular 50 250 250	≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	ion para Tinst Ccr Cmin Scr, II Scr, J Smin, II; Smin, J	ameter [-] [Nm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120 single and	17 365 M10 ≤ 4 (for shear le	M12 ≤ 10 bads perper	M16 ≤ 10 adicular 1 50 250 250 50	≤ 4 to the free	≤ 4	<u>≤4</u> 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C137: Reduction Tension load	ion para Tinst. Ccr Cmin Scr. II Scr. ⊥ Smin, II: Smin, ⊥ On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120 single and	17 365 M10 ≤ 4 (for shear left) chors at the ular to the fr with $c \geq 1$	M12 ≤ 10 bads perper ne edge She ree edge αedge, v⊥	M16 ≤ 10 adicular 1 50 250 250 50	≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e with $c \geq 1$	≤ 4 250) dge αedge, v II
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C137: Reduction Tension load	ion para Tinst Ccr Cmin Scr. II Scr. ⊥ Smin, II; Smin, ⊥ on factor αedge, N 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120 single and	17 365 M10 ≤ 4 (for shear left) (for shear left) chors at the ular to the from the from the the second	M12 ≤ 10 pads perper ne edge She ree edge α _{edge} . v⊥ 0,25	M16 ≤ 10 adicular 1 50 250 250 50	≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e vith $c \geq$ 50	≤ 4 250) dge α _{edge, ∨ II} 1,00
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C137: Reduction Tension load	ion para Tinst. Ccr Cmin Scr. II Scr. ⊥ Smin, II: Smin, ⊥ On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120 single and	17 365 M10 ≤ 4 (for shear left) chors at the ular to the fr with $c \geq 1$	M12 ≤ 10 bads perper ne edge She ree edge αedge, v⊥	M16 ≤ 10 adicular 1 50 250 250 50	≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e with $c \geq 1$	≤ 4 250) dge αedge. V II


Table C138:	nor position p	the second of the second second	and the set of the set of the second s		and the second of	1.	osition	nornor	ndicular to hor.	ioint
And	with c ≥	with s					with c		with s ≥	· · · · · · · · · · · · · · · · · · ·
	wiin c ≥ 50	50	-	1,00	1 1	•	50		with 5 ≥	α _g 1, N 1,00
	120	250		2,00		•	120		250	2,00
				1			120		200	2,00
Table C139:			parallel to		ear load		or noci	tion por	pendicular to I	or loint
Sector Sector A	Anon	with c			<u></u>	Allun		with c ≥		1
Shear load		50	50	≥ α _θ ιι 0,7	A second s	-	1-	50	50	α _{g⊥,V⊥} 0,50
perpendicular to the free		250	50	2,0			-	250	50	1,70
edge		250	250		the second se		1	250	250	2,00
Shear load		with c			A	Ê	1 1	with c ≥	with s ≥	Clg L,V II
parallel to the	o the		50	1,6		1		50	50	1,15
free edge	- *-	120	250					120	250	2,00
Table C140:	Character	istic val	ues of ten	sion and	shear I	oad re	sistar	ices		
AND A CONTRACT			15. E. 110						_{cr} and s ≥ s _{cr}	-
						Use	conditio	on		
	Perforated sleeve	Effective Anchorage depth		d/d				w/d w/w		d/d w/d w/w
Anchor size	ate	AAE		1	1	-	1	1	1 2	All
	erfor		40°C/24°C	80°C/50°C	120°C/72	2°C 40°C	/24°C	80°C/50	°C 120°C/72°C	temperatur ranges
	ď.	het	N	IRK.D = NRK.F	2)		N	IRK.D = N	2) Bkp	VEk,b ²⁾
		[mm]		That I think			[kN]	110,42	ing.	1111,0
		and a second sec	ed mean c	ompressi	ve stren			nm ^{2 1)}		
M8	SH 12	80								
M8 / M10/ IG-M6	SH 16	≥ 85	3,0	3,0	2,5		3,0	3,0	2,5	4,0
M12 / IG-M8	SH 20	≥ 85	·		_					
M16 / IG-M10	SH 20	≥ 85	3,5	3,5	3,0	1	3,5	3,5	3,0	7,5
	trengths, the s the and VRk.c II =	hown value VRk.c±acc nents	es are valid v ording to An	vithout conv nex C 3	version.				ling to Table C1	
Ancho	rsize	het	8N/N		0	δN∞		/ V	8v0	δV∞
		[mm]	[mm/kN]	(m	m]	[mm]	[mm	n/kN]	[mm]	[mm]
M8 – 1 IG-M6		all	0,13	0,13*N	Rk / 3.5	2*8N0	0,	55	0,55*V _{Rk} /3,5	1,5*8vo
M	6	all	- Gerves	9272.00	1999 (1994) 1997 (1994)	e	0,	31	0,31*V _{Rk} /3,5	1,5*δvo
Injection systemation systematic contract syst	em EJOT Mı	ultifix Vin	ylester / So	ormat ITH	Vinylest	er for			Annex C	7.0

Ilation parame Tinst Cer; (Cer,I) a Cmin Scr, II; (Scr,Ii; Scr, II; (Scr,Ii; Smin, II; Smin ction factors for ad ≥ Ωedge, N 1,00 1,00 1,00 1,00 1,00 2 with s ≥ 50 250 DT Multifix Vinyl	ter [-] [Nm] [mm] [mm] [mm] [] [mm] [] [mm] [] [] [mm] [] [] [mm] [] [] [] [] [] [] [] [] [] [] [] [] []	$ \begin{array}{c c} In chors at \\ Iicular to the \\ With c \geq \\ 50 \\ 250 \\ der tensio \\ Iicular to the line \\ 10 \\ 00 \\ Iicular to the line \\ $	the ed free ed 0 1 0n load Anc	lge Shear lge Jge. V⊥ J,35 ,00 Shor pos	Married State	the free of the fr	ne free ec n c ≥ 50 20 co hor. joi	≤ 5 = 250) dge α _{edge} , vi 1,00 1,00
Tinst Cer; (Cer,I) a Cmin Scr, II; (Scr,Ii, Scr, ⊥; (Scr,Ii, Srin, II; Smin ction factors fi ad ≥ 0xedge, N 1,00 1,00 1,00 50 min and to be	Image: Figure 1 [-] [Nm] [mm] [mm] [mm]	$M8 \le 5$ (for she) (for s	≤ 5 ear load the ed free ed α _{ed} 0 1 n load Anc	M12 ≤ 10 ds perper dge dge.v⊥ 0,35 ,00	≤ 10 120 (2 he ndicular to 50 250 (4 he 50 load Pa tion perpetth c ≥ 50	≤ 5) the free of)) rallel to th with 5 12 ndicular t with s 50	edge: c_{cr} the free economic control of the free economic control of	≤ 5 $= 250)$ dge $\alpha_{edge, VI}$ 1,00 1,00 int $\alpha_{g \perp, N}$ 1,15
Tinst Cer; (Cer,II) Ser, II; (Ser,II; Ser, II; (Ser,II; Ser, II; Ser,II; Smin, II; Smin ction factors fi ad 1,00 1,00 1,00 1,00 ors for anchor tion parallel to he with s ≥	Image: Second state state [-] [Nm] [mm] [mm] [mm] <tr< th=""><th>M8 ≤ 5 (for sheen inchors at licular to the with c ≥ 50 250 der tensio</th><th>≤ 5 ear load the ed free ed α_{ed} 0 1 n load Anc</th><th>M12 ≤ 10 is perpe</th><th>≤ 10 120 (2 he) ndicular to 50 250 (4 he) 50 load Par tion perpent th c ≥</th><th>≤ 5) the free of)) rallel to th with 5 12 ndicular t with s</th><th>edge: c_{cr} the free economic control of the free economic control of</th><th>≤ 5 $= 250)$ dge $\alpha_{edge, VI}$ 1,00 1,00 int $\alpha_{g \perp, N}$</th></tr<>	M8 ≤ 5 (for sheen inchors at licular to the with c ≥ 50 250 der tensio	≤ 5 ear load the ed free ed α _{ed} 0 1 n load Anc	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 50 load Par tion perpent th c ≥	≤ 5) the free of)) rallel to th with 5 12 ndicular t with s	edge: c_{cr} the free economic control of the free economic control of	≤ 5 $= 250)$ dge $\alpha_{edge, VI}$ 1,00 1,00 int $\alpha_{g \perp, N}$
Tinst Ccr; (Ccr,tl) B Cmin Sor, II; (Scr,fi, Sor, L; (Scr,fi, Smin, II; Smin ction factors for ad 2 1,00 1,00 1,00 1,00 1,00	Iter [-] [Nm] [mm] [mm] [mm] 1) [mm]	M8 ≤ 5 (for she mchors at licular to the with c ≥ 50 250 der tensio	≤ 5 ear load the ed free ed α _{ed} 0 1 n load	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 50 load Pa	≤ 5) the free of)) rallel to th with 5 12 ndicular t	edge: c_{cr} the free economic control of the free economic control of	≤ 5 = 250) dge (Xedge, VI 1,00 1,00
Tinst Ccr; (Ccr,1) Ξ Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi, Smin, II; Smin ction factors for ad ≥ αedge, N 1,00 1,00 1,00	ter [·] [Nm] [mm] [mm] [mm] 1) [mm] 1) [mm] 2) [mm] 2) [mm] 30 single a Perpend 40 perpend 40 perpend	M8 ≤ 5 (for she inchors at licular to the with c ≥ 50 250	≤ 5 ear load the ed free ed α _{ed} 0 1 n load	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50 load Pa	≤ 5) the free of) rallel to th with 5 12	≤ 5 edge: c _{cr} ne free ec n c ≥ 50 20	≤ 5 = 250) dge α _{edge} , vi 1,00 1,00
Tinst Ccr; (Ccr,1) Ξ Scr, II; (Scr,fi, Scr, ⊥; (Scr,fi, Smin, II; Smin Ction factors for ad ≥ αedge, N 1,00 1,00	Ler [-] [Nm] [m	M8 ≤ 5 (for she inchors at licular to the with c ≥ 50 250	≤ 5 ear load the ed free ed 0 1	M12 ≤ 10 ds perpe dge dge.v⊥ 0,35 ,00	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50	≤ 5) the free ()) allel to th with 5	≤ 5 edge: c _{cr} ne free economic $1 c ≥$ 50	≤ 5 = 250) dge α _{edge} , ∨1 1,00
Tinst Ccr; (Ccr,tl) B Cmin Sor, II; (Scr,fi, Sor, ⊥; (Scr,fi, Smin, II; Smin ction factors fi ad 2 (\alpha edge, N) 1,00	ter [-] [Nm] [mm] [mm] []) [mm] []) [mm] []) [mm] []] [mm] []] [mm]	M8 ≤ 5 (for she inchors at ticular to the with c ≥ 50	≤ 5 ear load the ed free ed : α _{ed} 0	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50	≤ 5) the free ()) allel to th with 5	≤ 5 edge: c _{cr} ne free economic $1 c ≥$ 50	≤ 5 = 250) dge α _{edge} , ∨1 1,00
Tinst Ccr; (Ccr,II) Ξ Scr, II; (Scr,Fi, Scr, ⊥; (Scr,Fi, Smin, II; Smin ction factors for ad ≥ αedge, N	ter [-] [Nm] [mm] [mm] []) [mm] []) [mm] []) [mm] []] [mm] []] [mm]	M8 ≤ 5 (for she inchors at licular to the with c ≥	≤ 5 ear load the ed free ed α _{ed}	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50	≤ 5) the free ()) rallel to th with	≤ 5 edge: c _{cr} ne free ec n c ≥	≤ 5 = 250) dge α _{edge} , vi
Tinst Ccr; (Ccr,1) B Cmin Scr, 11; (Scr,1i, Scr, 1; (Scr,1i, Smin, 11; Smin Ction factors for ad	ter [-] [Nm] [mm] [mm] []) [mm] []) [mm] []) [mm] []] [mm] []] [mm]	M8 ≤ 5 (for she	≤ 5 ear load the ed	M12 ≤ 10 is perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50	≤ 5) the free ()) rallel to th	s 5 edge: c∝	≤ 5 = 250)
Tinst Ccr; (Ccr,1) 9 Cmin Scr, 11; (Scr,1i, Scr, 1; (Scr,1i, Smin, 11; Smin ction factors fo	ter [-] [Nm] [mm] [mm] []) [mm] []) [mm] []) [mm] []] [mm] []] [mm]	M8 ≤ 5 (for she	≤ 5 ear load the ed	M12 ≤ 10 ds perpe	≤ 10 120 (2 he) ndicular to 50 250 (4 he) 250 (4 he) 50	≤ 5) the free ())	s 5 edge: c∝	≤ 5 = 250)
Tinst Ccr; (Ccr,ti) 9 Cmin Scr, II; (Scr,fi, Smin, II; Smin,	ter [-] [Nm] [mm] ∥) [mm] ⊥) [mm] ⊥ [mm]	M8 ≤5 (for she	≤ 5	M12 ≤ 10 is perpe	≤ 10 120 (2 he ndicular to 50 250 (4 he 50 50	≤5) the free (≤5	≤ 5
Tinst Ccr; (Ccr,ti) 9 Cmin Scr, II; (Scr,fi, Smin, II; Smin,	ter [-] [Nm] [mm] ∥) [mm] ⊥) [mm] ⊥ [mm]	M8 ≤5 (for she	≤ 5	M12 ≤ 10	≤ 10 120 (2 he ndicular to 50 250 (4 he 250 (4 he	≤5) the free (≤5	≤ 5
Tinst Ccr; (Ccr,ti) 2 Cmin Scr, II; (Scr,ti; Scr, L; (Scr,fi;	Eer [-] [Nm] [mm] ⊪) [mm] ⊥) [mm]	M8 ≤ 5	≤5	87 M12 ≤ 10	≤ 10 120 (2 he ndicular to 50 250 (4 he 250 (4 he	≤5) the free (≤5	≤ 5
Tinst Cer; (Cer,1) B Cmin Ser, 11; (Ser,1;	ter [-] [Nm] [mm] ") [mm]	M8 ≤ 5	≤5	87 M12 ≤ 10	≤ 10 120 (2 he ndicular to 50 250 (4 he	≤5) the free (≤5	≤ 5
Tinst Cer; (Cer,1) Ə Cmin	ter [-] [Nm] [mm]	M8 ≤ 5	≤5	87 M12 ≤ 10	≤ 10 120 (2 he ndicular to 50	≤ 5) the free o	≤5	≤ 5
Tinst Cer; (Cer.1)	ter [-] [Nm] [mm]	M8 ≤ 5	≤5	87 M12 ≤ 10	≤ 10 120 (2 he ndicular to	≤ 5	≤5	≤ 5
Tinst	ter	M8		M12	≤ 10	≤5		
	ter	M8		M12	and the second division of the local divisio			
llation parame	ler			248				
		215						
		-	_					
	E.			-				
	Rotary o	drilling						
[mm]	248 x 36	65 x 249						
	e.g. Sch	lagmann (D	E)		1		1.000	-
	EN 771-	1:2011+A1:	2015					
ower compressive	e (f _b / 8) ^{0,5}	i≤1,0	-		1183			
f _b [N/mm ²]	≥ 8				1005			
ρ [kg/dm³]	≥ 0,70				1	100	200	
				-		10	the second second	
	Poroton	121,0						
•	fb [N/mm²] ower compressive	Rock we $\rho [kg/dm^3]$ $\geq 0,70$ $f_b [N/mm^2]$ ≥ 8 ower compressive $(f_b / 8)^{0.5}$ EN 771E.N 771e.g. Sch[mm]248 x 36Rotary complexity	$\begin{array}{ll} \rho \ [kg/dm^3] & \geq 0,70 \\ \hline f_b \ [N/mm^2] & \geq 8 \\ \hline ower \ compressive & (f_b / 8)^{0.5} \leq 1,0 \\ \hline & EN \ 771-1:2011+A1 \\ \hline & e.g. \ Schlagmann \ (D) \end{array}$	$\begin{array}{ll} \rho [kg/dm^3] & \geq 0,70 \\ f_b [N/mm^2] & \geq 8 \\ \\ \hline ower \ compressive & (f_b \ / \ 8)^{0.5} \leq 1,0 \\ & EN \ 771-1:2011+A1:2015 \\ & e.g. \ Schlagmann \ (DE) \\ & [mm] & 248 \ x \ 365 \ x \ 249 \end{array}$	f_b [N/mm²] ≥ 8 ower compressive $(f_b / 8)^{0.5} \leq 1,0$ EN 771-1:2011+A1:2015 e.g. Schlagmann (DE) [mm] 248 x 365 x 249 Rotary drilling	ρ [kg/dm3] ≥ 0,70 $ f_b [N/mm2] ≥ 8 $ ower compressive $ (f_b / 8)^{0.5} ≤ 1,0 $ EN 771-1:2011+A1:2015 e.g. Schlagmann (DE) [mm] 248 x 365 x 249	$f_b [N/mm^2]$ ≥ 8 ower compressive $(f_b / 8)^{0.5} \leq 1,0$ EN 771-1:2011+A1:2015 e.g. Schlagmann (DE) [mm] 248 x 365 x 249	$\begin{array}{c c c c c c c } \rho \left[kg/dm^3 \right] & \geq 0,70 \\ \hline f_b \left[N/mm^2 \right] & \geq 8 \\ \hline ower \ compressive \\ & (f_b / 8)^{0.5} \leq 1,0 \\ \hline & EN \ 771-1:2011+A1:2015 \\ \hline & e.g. \ Schlagmann \ (DE) \\ \hline & e.g. \ Schlagmann \ (DE) \\ \hline & Rotary \ drilling \end{array}$

	the state of the second	and the second second	r groups u parallel to	and the second second	ear load		or nos	ition nerry	endicular to	hor, joint
Changland	7 then	with c			9.1	7.010715		with $c \ge$	with s ≥	CLG L. V L
Shear load perpendicular	1.00	50	50	0,6	the second se		1-	50	50	0,40
to the free		250	50	1,5				250	50	1,00
edge		250	250				1-	250	250	2,00
Shear load		with c	≥ with s				1	with c ≥	with s ≥	αg⊥.V∥
parallel to the	38	50	50	2,0		1		50	50	1,20
free edge		120	250	2,0	0			120	250	2,00
Table C147:	Character	istic val	ues of ten	sion and	shear I	oad re	sistar	nces		
				Charac	cteristic F	Resistan	ces w	ith c≥ c _{cr}	and s ≥ s _{cr}	
						Use o	conditi	on		
	d sleeve	Effective Anchorage depth		d/d				w/d w/w		d/d w/d w/w
Anchor size	Perforated sleeve	And	40°C/24°C	80°C/50°C	120°C/72	2°C 40°C	/24°C	80°C/50°C	120°C/72°C	All temperature ranges
	ũ.	hei	N	Rk,b = NRk,p	5)		N	NRK,6 = NRK	2)	VEIK.D
		[mm]		na,0 - 1405,p		1	[kN]		-p	Y HED
			sed mean o	ompressi	ve stren	gth f _b ≥	8 N/n	nm ^{2 1)}		
M8	SH 12	80		1.1.1.1.1.1.1						1
M8 / M10/ IG-M	5 SH 16	≥ 85		2440	IT CS	110		1.3.1		3,0
M12 / IG-M8	SH 20	≥ 85	2,0	2,0	1,5	2	2,0	2,0	1,5	10000
	00 20	- 00								
	SH 20 pressive stre	≥ 85 engths resis				conversio	on facto	or accordin	g to Table C1	4,5 42. For stone
 For lower comp with higher street 	SH 20 pressive stree engths, the s and V _{Rk,c ii} =	≥ 85 engths resis hown value VRkc⊥acc	es are valid v	vithout conv		conversio	on facto	or accordin	g to Table C1	
 For lower com with higher street NBK.b.c = NBK.p.c Table C148: 	SH 20 pressive streengths, the s and VRk,cill = Displacen	≥ 85 engths resis hown value VRkc⊥acc	es are valid v	vithout conv	ersion.	conversiα δN∞		or accordin	g to Table C1 δV0	
 For lower com with higher stree NBK.b.c = NBK.p.c Table C148: Anchor 	SH 20 pressive streengths, the s and V _{Rk,c II} = Displacen size	≥ 85 engths resis hown value VRkc+acc nents	es are valid v cording to An	vithout conv nex C 3	ersion.		δV			42. For stone
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: Anchor M8 – M 	SH 20 pressive stre angths, the s and VRKCII = Displacen size	≥ 85 engths resis hown value VRk c + acc nents hef	es are valid v cording to An δN / N [mm/kN]	vithout conv nex C 3 δι [m	ersion. Io m]	δ№ [mm]	δv [mn	/ V n/kN]	δνο	42. For stone δv∞ [mm]
 For lower com with higher stree NBK.b.c = NBK.p.c Table C148: Anchor 	SH 20 pressive stree angths, the s and VRK/FI Displacen size 12 / M10	≥ 85 engths resis hown value > V _{Rkc} + acc nents hef [mm]	es are valid v cording to An δN / N	vithout conv nex C 3 δN	ersion. Io m]	δN∞	δv [mn 0	/ V n/kN] ,55 (δνο [mm]),55*V _{Bk} / 3,5	42. For stone δV∞ [mm] 5 1,5*δvo
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: I Anchor M8 – M IG-M6 – M16 	SH 20 pressive stree engths, the s and V _{Rkc11} = Displacen size 12 / M10	≥ 85 engths resis shown value = V _{Rkc} ± acc nents [mm] all all	es are valid v cording to An δN / N [mm/kN] 0,13	vithout conv nex C 3 <u>(m</u> 0,13*N	ersion. 10 m] _{Rk} / 3,5	δN∞ [mm] 2*δN0	δν [mn 0	//V n/kN] ,55 (,31 (δνο [mm]),55*V _{Bk} / 3,5	42. For stone: δV∞ [mm] 5 1,5*δvo 5 1,5*δvo
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: I Anchor M8 – M IG-M6 – M16 	SH 20 pressive stree engths, the s and V _{Rkc11} = Displacen size 12 / M10	≥ 85 engths resis thown value = V _{Rkc} ⊥acc nents hef [mm] all all tistic value	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] _{Rk} / 3,5	δ∾∞ [mm] 2*δN0 oad res	δν [mn 0 sistar	/ V n/kN] ,55 (,31 (nces unc	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 der fire exp ances	42. For stone: δV∞ [mm] 5 1,5*δvo 5 1,5*δvo
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: Anchor M8 – M IG-M6 – M16 Table C149: 	SH 20 pressive stree engths, the s and V _{Rk,c} = Displacen size 12 / M10 character Perforat	≥ 85 engths resis shown value = V _{Rkc} ⊥acc nents hef [mm] all all ristic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve prage depth	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear I	δ∾∞ [mm] 2*δ№ oad re: Chara Na	δν [mn 0 sistar acteris	/ V n/kN] ,55 (,31 (nces und	δV0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 der fire exp ances ^{3k,b,fi}	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 0,5*δvo
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: I Anchor M8 – M IG-M6 – M16 	SH 20 pressive stree angths, the s and VRKCII = Displacen size 12 / M10 Character	≥ 85 engths resis shown value = V _{Rkc} ⊥acc nents hef [mm] all all ristic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve brage depth het	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] _{Rk} / 3,5	δ∾∞ [mm] 2*δ№ oad re: Chara Na	δν [mn 0 sistar	/ V n/kN] ,55 (,31 (nces und stic Resist N _{Rk,p,II} = Vr	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 der fire exp ances	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo
 For lower com with higher stre 2) NRK.b.c = NRK.p.c Table C148: 1 Anchor M8 – M IG-M6 – M16 Table C149: 1 Anchor size 	SH 20 pressive stree engths, the s and V _{Rk,cll} = Displacen size 12 / M10 Character Perforat sleeve	≥ 85 engths resis shown value = V _{Rkc} ± acc nents [mm] all all istic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve brage depth het [mm]	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear I	δ∾∞ [mm] 2*δ№ oad re: Chara Na	δν [mn 0 sistar acteris	/ V n/kN] ,55 (,31 (nces unc	δV0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 der fire exp ances ^{3k,b,fi}	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 0,5*δvo
 For lower com with higher stre 2) NRk.b.c = NRk.p.c Table C148: Anchor M8 – M IG-M6 – M16 Table C149: 	SH 20 pressive stree engths, the s and V _{Rkc11} = Displacen size 12 / M10 Character Perforat sleeve S SH 16	≥ 85 engths resis shown value = V _{Rkc} ⊥acc nents [mm] all all ristic value ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het [mm] 130	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] Rk / 3,5 shear I	δ∾∞ [mm] 2*δN0 Oad re: Chara Na	δν [mn 0 sistar acteris	/ V n/kN] ,55 (,31 (nces unc stic Resist N _{Rk,p,II} = Vr [kN]	δV0 [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 der fire exp ances ^{3k,b,fi}	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 0,5*δvo
 For lower com, with higher stre 2) NRkb.c = NRkp.c Table C148: I Anchor M8 – M IG-M6 – M16 Table C149: I Anchor size M8 / M10 /IG-M6 M12 / M16 / IG-M8 IG-M10 	SH 20 pressive stree engths, the s and V _{Rk,c} = Displacen size 12 / M10 5 Character Sleeve 6 SH 16 SH 20	≥ 85 engths resis shown value > V _{Rkc} ⊥ acc nents [mm] all all ristic value c Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve brage depth het [mm]	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] вк / 3,5 shear I 330	δ∾∞ [mm] 2*δN0 Oad re: Chara Na	δν [mn 0 0 sistar acteris s.b.t = N R60	/ V n/kN] ,55 (,31 (nces unc stic Resist N _{Rk,p,II} = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 der fire exp ances ak.b.fi R90	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 1,5*δvo Posure B120
 For lower com with higher stre 2) NRk.b.c = NRK.p.c Table C148: 1 Anchor M8 – M IG-M6 – M16 Table C149: 1 Anchor size M8 / M10 /IG-M6 M12 / M16 / 	SH 20 pressive stree engths, the s and V _{Rk,c} = Displacen size 12 / M10 5 Character Sleeve 6 SH 16 SH 20	≥ 85 engths resis shown value > V _{Rkc} ⊥ acc nents [mm] all all ristic value c Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het [mm] 130	vithout conv nex C 3 [m 0,13*N sion and	ersion. 10 m] вк / 3,5 shear I 330	δ∾∞ [mm] 2*δN0 Oad re: Chara Na	δν [mn 0 0 sistar acteris s.b.t = N R60	/ V n/kN] ,55 (,31 (nces unc stic Resist N _{Rk,p,II} = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 der fire exp ances ak.b.fi R90	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 1,5*δvo Posure B120
 For lower com with higher stre 2) NRk.b.c = NRK.p.c Table C148: 1 Anchor M8 – M IG-M6 – M16 Table C149: 1 Anchor size M8 / M10 /IG-M6 M12 / M16 / IG-M8 IG-M10 	SH 20 pressive stree engths, the s and VRKCII = Displacen size 12 / M10 Character Perforat sleeve S SH 16 SH 20 ce assessed	≥ 85 engths resis shown value = V _{Rkc} ⊥acc nents [mm] all all ristic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth h _{et} [mm] 130 ≥ 130	vithout conv nex C 3	rersion. m] mk / 3,5 shear I 330 ,64	δ№∞ [mm] 2*δ№ Oad re: Chara NR	δν [mn 0 0 sistar acteris s.b.t = N R60	/ V n/kN] ,55 (,31 (nces unc stic Resist N _{Rk,p,II} = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 der fire exp ances ak.b.fi R90	42. For stone δV∞ [mm] 5 1,5*δvo 5 1,5*δvo 5 1,5*δvo Posure R120

Brick type			Hollo								
Insulation ma	atorial			ton F2			-		-	-	
	alenai	a [ka/dm3]	≥ 0.9	200.00		_	-	1	-		
Density Normalised r	nean	ρ [kg/dm ³]		0			-	line.	and a		
compressive	strenght	f _b [N/mm ²]	≥ 10	1.1							
strengths	actor for lowe	r compressive	(16 / 1	0) ^{0,5} :	ALC: NOT THE OWNER OF	-					
Code			EN 7	71-1:	2011+A	1:2015		4			-
Producer (Co	ountry)			_	gmann (DE)		A.			
Brick dimens	ions	[mm]	248 >	365	x 249						
Drilling metho	bc		Rota	ry dril	ling						
			214.0 28.0		214.0						
Table C151	• Installati	on parame		≥19,6		<u>)</u> 85					
Table C151 Anchor size	: Installati	on parame		≥19,6		55 M10	M12	M16	IG-M6	IG-M8	IG-M1
and the second se		on parame	ter	1	3		<u>M12</u> ≤ 10	≤ 10	≤ 5	IG-M8 ≤ 5	IG-M1 ≤ 5
Anchor size Installation to Char. Edge d (under fire co	orque stance nditions)		ter	≥19 <u>,6</u>		M10 ≤ 5	≤ 10	≤ 10 120 (2 h ndicular t	≤ 5	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg	orque stance nditions) e Distance	Tinst Cor; (Cor Cmin	ter [[-] Nm] mm]		M10 ≤ 5	≤ 10	≤ 10 120 (2 h ndicular t 50	≤ 5 et) o the free	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic	orque stance nditions) e Distance Spacing	Tinst Ccr; (Ccr Cmin Scr, II: (Scr	ter (,ii) [1 (,ii, ii) [1	[-] Nm] mm] mm]		M10 ≤ 5	≤ 10	≤ 10 120 (2 h ndicular t 50 250 (4 h	≤ 5 et) o the free ef)	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co	orque stance nditions) e Distance Spacing nditions)	Tinst Cor. (Cor Cmin Scr. II: (Scr Scr. ⊥: (Scr	ter [,,i) [1 .,fi, II] .,fi, II] [1	[-] Nm] mm] mm] mm]		M10 ≤ 5	≤ 10	≤ 10 120 (2 h ndicular t 50 250 (4 h 250 (4 h	≤ 5 et) o the free ef)	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Spa	orque istance nditions) e Distance : Spacing nditions) acing	Tinst Ccr. (Ccr Cmin Scr. II: (Scr Scr. ±: (Scr Smin, II: Sm	ter [_,fi, 1) [[_,fi, ⊥) [] [fi, ⊥) []	[-] Nm] mm] mm] mm] mm]	3 ≤ 5 (for s	M10 ≤ 5 hear load	≤ 10 s perper	≤ 10 120 (2 h ndicular t 50 250 (4 h	≤ 5 et) o the free ef)	≤ 5	≤5
Anchor size Installation to Char. Edge d (under fire co Minimum Edg Characteristic (under fire co Minimum Spa	orque stance nditions) e Distance Spacing nditions)	Tinst Ccr. (Ccr Cmin Scr. II: (Scr Scr. ±: (Scr Smin, II: Sm	ter [_,fi, 1) [[_,fi, ⊥) [] [fi, ⊥) []	[-] Nm] mm] mm] mm] mm]	3 ≤ 5 (for s	M10 ≤ 5 hear load	≤ 10 s perper	≤ 10 120 (2 h ndicular t 50 250 (4 h 250 (4 h 50	≤ 5 et) o the free ef)	≤ 5	≤5
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque istance nditions) e Distance : Spacing nditions) acing	Tinst Ccr. (Ccr Cmin Scr. II: (Scr Scr. ±: (Scr Smin, II: Sm	ter (ii) [1 (iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((i	[-] Nm] mm] mm] mm] mm] mm] e and	M8 ≤ 5 (for s chors a	M10 ≤ 5 thear load	≤ 10 s perper ge Shear I	≤ 10 120 (2 h 50 250 (4 h 50 (4 h 50	≤ 5 et) o the free f et) et)	≤ 5 edge: c₀	≤ 5 r = 250)
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction fension load	Tinst Ccr. (Ccr Cmin Scr. II: (Scr Scr. ±: (Scr Smin, II: Sn on factors f	ter (ii) [1 (iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((i	[-] Nm] mm] mm] mm] mm] mm] e and	M8 ≤ 5 (for s chors a	M10 ≤ 5 thear load	≤ 10 s perper ge Shear	≤ 10 120 (2 h 50 250 (4 h 50 (4 h 50	≤ 5 et) o the free ef)	≤ 5 edge: c₀ e free ed	≤ 5 r = 250)
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque istance nditions) e Distance : Spacing nditions) acing 2: Reductio	Tinst Ccr, (Ccr Cmin Scr, It; (Scr Scr, ⊥; (Scr Smin, II; Sm on factors fo αedge, N	ter (i) [1 (ii) [1 (iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii)	[-] Nm] mm] mm] mm] mm] mm] e and	M8 ≤ 5 (for s chors a	M10 ≤ 5 thear load t the edge e free edge ≥ αedge	≤ 10 s perper ge Shear ge	≤ 10 120 (2 h 50 250 (4 h 50 (4 h 50	≤ 5 et) o the free f ef) et) with	≤ 5 edge: c _c e free ec c ≥	≤ 5 r = 250) dge αedge, V∥
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque istance nditions) e Distance : Spacing nditions) acing 2: Reductio Fension load with c ≥	Tinst Ccr. (Ccr Cmin Scr. II: (Scr Scr. ±: (Scr Smin, II: Sn on factors f	ter (i) [1 (ii) [1 (iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii) [1 ((iii)	[-] Nm] mm] mm] mm] mm] mm] e and	M8 ≤ 5 (for s chors a ular to th with c	M10 ≤ 5 shear load t the edg e free edg ≥ α _{edg} 0,	≤ 10 s perper ge Shear	≤ 10 120 (2 h 50 250 (4 h 50 (4 h 50	≤ 5 et) o the free f ef) et)	≤ 5 edge: c_c e free ec $c \geq$ 0	≤ 5 r = 250)
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spa Table C152	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120	Tinst Ccr. (Ccr Cmin Scr. II. (Scr Scr. J. (Scr Smin, II: Sm On factors for αedge, N 1,00 1,00	ter [,ii) [1 .fi, ii) [1 .fi, ii) [1 .fi, .1) [1 or single Perpe	[-] Nm] mm] mm] mm] mm] e and endicu	M8 ≤ 5 (for s chors a ular to th with c 50 250	M10 ≤ 5 shear load t the edg e free edg ≥ αedg 0, 1,	≤ 10 s perper ge Shear ge 35	≤ 10 120 (2 h 50 250 (4 h 50 (4 h 50	≤ 5 et) o the free free free free free free free fr	≤ 5 edge: c_c e free ec $c \geq$ 0	≤ 5 r = 250) dge αedge, ∨∥ 1,00
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque istance nditions) e Distance : Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120 3: Factors 1	Tinst Ccr. (Ccr Cmin Scr. It. (Scr Scr. ⊥. (Scr Smin. II: Sm On factors for αedge, N 1,00 1,00 1,00 1,00	ter [,ii) [.ii, i) [.ii, i) [.ii, i) [.ii, i] [or singl Perpe	[-] Nm] mm] mm] mm] mm] e and endicu	M8 ≤ 5 (for s chors a ular to th with c 50 250	M10 ≤ 5 shear load t the edg ≥ αedg ≥ αedg 0, 1, on load	≤ 10 s perper ge Shear ge ue, V⊥ 35 00	≤ 10 120 (2 h 50 250 (4 h 50 0ad Pa	≤ 5 et) o the free of ef) et) rallel to the with 50 12	≤ 5 edge: c _c e free ec c ≥ 0	dge αedge, ∨∥ 1,00 1,00
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque stance nditions) e Distance Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120 3: Factors finite schor position	Tinst Ccr; (Ccr Cmin Scr, L; (Scr Smin, II; Sm On factors for Ωedge, N 1,00 1,00 parallel to ho	ter [,,ii) [1 ,,ii, 1) [1 ,,ii, 1) [1 ,,ii, 1) [1 or singl Perpe	[-] Nm] mm] mm] mm] mm] mm] e and endicu	M8 ≤ 5 (for s chors a ular to th with c 50 250	M10 ≤ 5 shear load t the edg ≥ αedg ≥ αedg 0, 1, on load	≤ 10 s perper ge Shear ge 10. V ⊥ 35 00 nor posit	≤ 10 120 (2 h hdicular t 50 250 (4 h 50 0ad Pa	≤ 5 et) o the free f et) arallel to the with 5 12 endicular to	≤ 5 edge: c _c e free ec c ≥ 0 20 c hor. jo	dge αedge, ∨≡ 1,00 1,00
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spi Table C152	orque stance nditions) e Distance Spacing acing 2: Reduction fension load with $c \ge$ 50 120 3: Factors f nchor position with $c \ge$	Tinst Cor; (Cer Cmin Ser, II; (Ser Ser, ⊥; (Ser Smin, II; Sin On factors fr Qedge, N 1,00 1,00 parallel to ho with s ≥	ter [,,ii) [1 ,,ii, 1) [1 ,,ii, 1) [1 ,,ii, 1) [1 or singl Perpe	[-] Nm] mm] mm] mm] mm] mm] e and endicu endicu endicu	M8 ≤ 5 (for s chors a ular to th with c 50 250	M10 ≤ 5 shear load t the edg ≥ α add ≥ α add 0, 1, 0n load Anct	≤ 10 s perper ge Shear ge 10. V⊥ 35 00 mor positi	≤ 10 120 (2 h ndicular t 50 250 (4 h 50 0ad Pa ion perpe	≤ 5 et) o the free o er) et) with 50 12 endicular to with s a	≤ 5 edge: c _c e free ec c ≥ 0 20 c hor. jo	dge αedge, ∨ ≡ 1,00 1,00
Anchor size Installation to Char. Edge di (under fire co Minimum Edg Characteristic (under fire co Minimum Spatian Table C152	orque stance nditions) e Distance Spacing nditions) acing 2: Reduction Fension load with c ≥ 50 120 3: Factors finite schor position	Tinst Ccr; (Ccr Cmin Scr, L; (Scr Smin, II; Sm On factors for Ωedge, N 1,00 1,00 parallel to ho	ter .,;i) [1 .,;i, ⊥) [1 .,;i, ⊥) [1 .,;i, ⊥) [1 or singl Perpe	[-] Nm] mm] mm] mm] mm] mm] e and endicu	M8 ≤ 5 (for s chors a ular to th with c 50 250	M10 ≤ 5 shear load t the edg ≥ αedg ≥ αedg 0, 1, on load	≤ 10 s perper ge Shear ge 10. V⊥ 35 00 mor posit	≤ 10 120 (2 h hdicular t 50 250 (4 h 50 0ad Pa	≤ 5 et) o the free f et) arallel to the with 5 12 endicular to	≤ 5 edge: c _c e free ec c ≥ 0 20 c hor. jo	dge αedge, ∨∥ 1,00 1,00


	and the second	and the second s	r groups i parallel to	and the second sec			or pos	ition perpe	endicular to	hor inint
Charryland	1.11017	with c		1	Ŵ.L	1.1.1.2.1.		with c ≥	with s ≥	Ωg L, V L
Shear load perpendicular	11.000	50	50	0,6	the second se		1-	50	50	0,40
to the free		250	50	1,5				250	50	1,00
edge		250	250				4	250	250	2,00
Shear load		with c	≥ with s	≥ αg ()	XII (- 12	1	with c ≥	with s ≥	α(g ⊥,V II
parallel to the	38	50	50	2,0	0	1		50	50	1,20
free edge		120	250	2,0	0			120	250	2,00
Table C155:	Character	istic val	ues of ten	sion and	shear l	oad re	sista	nces		
		100.00		Charac	cteristic R	Resistan	ces w	ith c≥c _{cr}	and s ≥ s _{cr}	
						Use o	conditi	ion		
	I sleeve	Effective Anchorage depth		d/d				w/d w/w		d/d w/d w/w
Anchor size	Perforated sleeve	And	40°C/24°C	80°C/50°C	120°C/72	°C 40°C	/24°C	80°C/50°C	120°C/72°C	All temperatur
	ď	hei		Rk,b = NRk,p	2)			NRK,b = NRK	2)	ranges V _{Rk.b} ²⁾
		[mm]		нк,в = тинк,р	6 m	-	kN1	NHK,D = INHK	,p	V HK.D
	-0-21		ed mean c	ompressiv	ve strend			mm ^{2 1)}		
M8	SH 12	80							-	
M8 / M10/ IG-M	6 SH 16	≥ 85		3.60	11/3	. 11.		3.3.		3,0
M12 / IG-M8	011.00	≥ 85	2,0	2,0	1,5	2	2,0	2,0	1,5	-372.5
	SH 20	2 00								
M16 / IG-M10		≥ 85 engths resis				conversio	on fact	or accordin	g to Table C1	4,5 50. For stone
	SH 20 pressive stre engths, the s and V _{Rk,c II} =	≥ 85 engths resis hown value VRkc⊥acc	es are valid v	vithout conv		conversio	on fact	or accordin	g to Table C1	
M16 / IG-M10 ¹⁾ For lower comwith higher str ²⁾ N _{Rk,b,c} = N _{Rk,p,c} Table C156:	SH 20 pressive stre engths, the s and VRk,cill = Displacer	≥ 85 engths resis hown value VRkc⊥acc	es are valid v	vithout conv	ersion.	conversio ôN∞		or accordin	g to Table C1 δV0	
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ NRk.b.c = NRk.p.c Table C156: Anchor	SH 20 pressive stre engths, the s and V _{Rk,c} = Displacer size	≥ 85 Ingths resist hown value VRkc⊥acc nents	es are valid v ording to An	vithout conv nex C 3 δN	ersion.		δν			50. For stone
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ NRk.b.c = NRk.p.c Table C156: Anchor M8 – M	SH 20 pressive stre engths, the s and V _{Rk,c} = Displacer size	≥ 85 engths resis hown value VRk c 1 acc nents hef	es are valid v cording to An δN / N [mm/kN]	vithout conv nex C 3 δN [mi	ersion. IO m]	δN∞ [mm]	δv [mr	/ / V n/kN]	δνο	50. For stone δ∨∞ [mm]
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ NRk.b.c = NRk.p.c Table C156: Anchor	SH 20 pressive stre engths, the s and V _{Rk,c} = Displacer size 112 / M10	≥ 85 engths resis hown value VRkc±acc nents hef [mm]	es are valid v cording to An δN / N	vithout conv nex C 3 δN	ersion. IO m]	δN∞	δν [mr 0	//V n/kN] ,55 (δvo [mm]	δV∞ [mm] 1,5*δ∨0
M16 / IG-M10 ¹⁾ For lower com- with higher str ²⁾ N _{Rk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – N IG-M6 – M16	SH 20 pressive stre engths, the s and Vakcill = Displacer size	≥ 85 engths resis hown value > V _{Rkc} ⊥acc nents hef [mm] all all	es are valid v cording to An δN / N [mm/kN] 0,13	vithout conv nex C 3 δΝ [mi 0,13*Ν	ersion. 10 m] _{Rk} / 3,5	δN∞ [mm] 2*δN0	δν [mr 0	//V n/kN] ,55 (,31 (δνο [mm]),55*V _{Bk} / 3,5	δV∞ [mm] 1,5*δvo 1,5*δvo
M16 / IG-M10 ¹⁾ For lower com- with higher str ²⁾ N _{Rk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – N IG-M6 – M16	SH 20 pressive stre engths, the s and Vakcill = Displacer size	≥ 85 engths resis hown value > V _{Rkc} ⊥acc nents hef [mm] all all istic val	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] _{Rk} / 3,5	δ∾∞ [mm] 2*δ№ oad re: Chara	δν [mr 0 0 sistar	// V n/kN] ,55 (0 ,31 (0 nces uno stic Resista	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	δV∞ [mm] 1,5*δvo 1,5*δvo
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ N _{Rk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – N IG-M6 – M16 Table C157:	SH 20 pressive streengths, the s and Vake II = Displacer size II 2 / M10 S Character Perforat	≥ 85 engths resis hown value > V _{Rkc} ⊥acc nents hef [mm] all all istic value Eed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve prage depth	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] Rk / 3,5 shear l	δ∾∞ [mm] 2*δ№ oad re: Chara Nat	δν [mr 0 sista acteris	/ / V n/kN] ,55 (,31 (nces und	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	δV∞ [mm] 1,5*δvo 1,5*δvo 50.5
M16 / IG-M10 ¹⁾ For lower com- with higher str ²⁾ N _{Rk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – N IG-M6 – M16	SH 20 pressive streengths, the s and VRk,cli = Displacer size 112 / M10 S Character	≥ 85 engths resis hown value > V _{Rkc} ⊥acc nents hef [mm] all all istic value Eed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] _{Rk} / 3,5	δ∾∞ [mm] 2*δ№ oad re: Chara Nat	δν [mr 0 0 sistar	/ / V n/kN] ,55 (,31 (nces unc stic Resista NRk.p.it = VF	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	δV∞ [mm] 1,5*δvo 1,5*δvo
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ N _{Hk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – N IG-M6 – M10 Table C157: Anchor size	SH 20 pressive streengths, the s and Vake II = Displacer size 112 / M10 S Character Perforat sleeve	≥ 85 engths resis hown value > Vake ± acc nents hef [mm] all all istic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve brage depth het [mm]	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] Rk / 3,5 shear l	δ∾∞ [mm] 2*δ№ oad re: Chara Nat	δν [mr 0 sista acteris	// V n/kN] ,55 (0 ,31 (0 nces uno stic Resista	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	δV∞ [mm] 1,5*δvo 1,5*δvo 1,5*δvo posure
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ N _{Hk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – M IG-M6 – M10 Table C157: Anchor size M8 / M10 /IG-M M12 / M16 /	SH 20 pressive stre engths, the s and Vake ii = Displacer size II2 / M10 Character Perforat sleeve 6 SH 16 SH 20	≥ 85 engths resis hown value > VRkc⊥ acc nents hef [mm] all all istic value ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] Rk / 3,5 shear l	δ∾∞ [mm] 2*δNo oad re: Chara Na	δν [mr 0 sista acteris	/ / V n/kN] ,55 (,31 (nces unc stic Resista NRk.p.II = Vr [kN]	δνο [mm] 0,55*V _{Rk} / 3,5 0,31*V _{Rk} / 3,5 ler fire exp ances	δV∞ [mm] 1,5*δvo 1,5*δvo 1,5*δvo posure
M16 / IG-M10 ¹⁾ For lower com- with higher str ²⁾ N _{Rkb.c} = N _{Rkp.c} Table C156: Anchor M8 – M IG-M6 – M10 Table C157: Anchor size M8 / M10 /IG-M M12 / M16 / IG-M8 IG-M10	SH 20 pressive streengths, the s and Vake ii = Displacer size 112 / M10 S Character Perforat sleeve 6 SH 16 SH 20	≥ 85 engths resis hown value > VRkc⊥ acc nents hef [mm] all all istic value ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het [mm] 130	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] Rk / 3,5 shear h 330	δ∾∞ [mm] 2*δNo oad re: Chara Na	δν [mr 0 0 sistan acteris s.b.li = 1 R60	/ / V n/kN] ,55 (,31 (nces unc stic Resista NRk.p.II = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 ler fire exp ances ak.b.fi R90	δV∞ [mm] 1,5*δvo 1,5*δvo 1,5*δvo SOSURE R120
M16 / IG-M10 ¹⁾ For lower com with higher str ²⁾ N _{Hk,b,c} = N _{Rk,p,c} Table C156: Anchor M8 – M IG-M6 – M10 Table C157: Anchor size M8 / M10 /IG-M M12 / M16 /	SH 20 pressive streengths, the s and Vake ii = Displacer size 112 / M10 S Character Perforat sleeve 6 SH 16 SH 20	≥ 85 engths resis hown value > VRkc⊥ acc nents hef [mm] all all istic value ed Anche	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het [mm] 130	vithout conv nex C 3 [mi 0,13*Ni sion and	ersion. 10 m] Rk / 3,5 shear h 330	δ∾∞ [mm] 2*δNo oad re: Chara Na	δν [mr 0 0 sistan acteris s.b.li = 1 R60	/ / V n/kN] ,55 (,31 (nces unc stic Resista NRk.p.II = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 ler fire exp ances ak.b.fi R90	δV∞ [mm] 1,5*δvo 1,5*δvo 1,5*δvo SOSURE R120
M16 / IG-M10 1) For lower com with higher str 2) NRkb.c = NRkp.c Table C156: Anchor M8 – M IG-M6 – M10 Table C157: Anchor size M8 / M10 /IG-M M12 / M16 / IG-M8 IG-M10	SH 20 pressive stresengths, the s and V _{Rk,c} = = Displacer size H2 / M10 Character Perforat sleeve 6 SH 16 SH 20 perassessed	≥ 85 engths resis hown value > Vake + acc nents hef [mm] all all istic value ed Ancho	es are valid v cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth het [mm] 130 ≥ 130	vithout conv nex C 3	ersion. 10 m] shear h 330 ,64	δ№ [mm] 2*δ№ Oad re: Chara NR	δν [mr 0 0 sistan acteris s.b.li = 1 R60	/ / V n/kN] ,55 (,31 (nces unc stic Resista NRk.p.II = Vr [kN]	δV0 [mm] 0,55*V _{Rk} /3,5 0,31*V _{Rk} /3,5 ler fire exp ances ak.b.fi R90	δV∞ [mm] 1,5*δvo 1,5*δvo 00Sure R120

$\alpha_{g,II,N}$ 1,50 2,00 oups under she allel to hor. joint with s ≥ $\alpha_{g,II,N}$ 50 0,4 50 1,0 250 2,00 with s ≥ $\alpha_{g,II,N}$ 50 1,0 250 2,00 owith s ≥ $\alpha_{g,II,N}$ 50 1,6 250 2,00 of tension and $\alpha_{g,II,I}$	n parallel to ≥ with 50 25 ≥ with 50 25 25 25	er shear load joint $\alpha_{g , V \perp}$ 0,40 1,00 2,00 $\alpha_{g , V }$ 1,65 2,00	• -	with 50 120 nor pos	$c \ge$ 1 1 1 1 1 1 1 1 1 1 1 1 1	pendicular to hor. with $s \ge 50$ 250 pendicular to h with $s \ge 50$ 50	α _{g 1.N} 1,00 2,00
2,00 oups under she allel to hor. joint with $s \ge \alpha_{g,H}$ 50 0,4 50 1,0 250 2,00 with $s \ge \alpha_{g,H}$ 50 1,6 250 2,00 of tension and Charact	0 or groups n parallel to 50 50 25 ≥ with 50 25 25 25	$\begin{array}{c c} \text{point} & & \\ \hline \alpha_{gII,V\pm} & \\ \hline 0,40 & \\ \hline 1,00 & \\ 2,00 & \\ \hline \alpha_{gII,VII} & \\ \hline 1,65 & \\ 2,00 & \\ \end{array}$		120 nor pos	ition per with c ≥ 50 250	250 pendicular to h with s ≥ 50	2,00 hor. joint α _{g ⊥} v ⊥
oups under she allel to hor. joint with $s \ge \alpha_{gll}$, 50 0,4 50 1,0 250 2,0 with $s \ge \alpha_{gll}$, 50 50 1,6 250 2,0 of tension and Character	or groups n parallel to 50 50 25 ≥ with 50 25 25	$\begin{array}{c c} \text{point} & & \\ \hline \alpha_{gII,V\pm} & \\ \hline 0,40 & \\ \hline 1,00 & \\ 2,00 & \\ \hline \alpha_{gII,VII} & \\ \hline 1,65 & \\ 2,00 & \\ \end{array}$		nor pos	ition per with c ≥ 50 250	pendicular to h with s ≥ 50	nor. joint α _{g ⊥, v ⊥}
allel to hor. joint with s ≥ α _g μ, 50 0,4 50 1,0 250 2,0 with s ≥ α _g μ, 50 1,6 250 2,0 of tension and Charact	n parallel to ≥ with 50 25 ≥ with 50 25 25 25	$\begin{array}{c c} \text{point} & & \\ \hline \alpha_{gII,V\pm} & \\ \hline 0,40 & \\ \hline 1,00 & \\ 2,00 & \\ \hline \alpha_{gII,VII} & \\ \hline 1,65 & \\ 2,00 & \\ \end{array}$			with c ≥ 50 250	with s ≥ 50	$\alpha_{g\perp,V\perp}$
allel to hor. joint with s ≥ α _g μ, 50 0,4 50 1,0 250 2,0 with s ≥ α _g μ, 50 1,6 250 2,0 of tension and Charact	n parallel to ≥ with 50 25 ≥ with 50 25 25 25	$\begin{array}{c c} \text{point} & & \\ \hline \alpha_{gII,V\pm} & \\ \hline 0,40 & \\ \hline 1,00 & \\ 2,00 & \\ \hline \alpha_{gII,VII} & \\ \hline 1,65 & \\ 2,00 & \\ \end{array}$			with c ≥ 50 250	with s ≥ 50	$\alpha_{g\perp,V\perp}$
with s ≥ α _g II, 50 0,4 50 1,0 250 2,0 with s ≥ α _g II, 50 1,6 250 2,0 of tension and Charact	 ≥ with 50 50 25 ≥ with 50 25 	$ \begin{array}{c} \alpha_{g} \parallel , \vee \perp \\ 0, 40 \\ 1, 00 \\ 2, 00 \\ \alpha_{g} \parallel , \vee \parallel \\ 1, 65 \\ 2, 00 \end{array} $			with c ≥ 50 250	with s ≥ 50	$\alpha_{g} \perp, v \perp$
50 0,4 50 1,0 250 2,0 with s ≥ αg II, 50 1,6 250 2,0 of tension and Charact	50 25 ≥ with 50 25	0,40 1,00 2,00 α _g ,v 1,65 2,00			250		
250 2,0 with s ≥ αg II, 50 1,6 250 2,0 of tension and Character	25 ≥ with 50 25	2,00 α _g II,V II 1,65 2,00				50	0,40
with s ≥ αg II, 50 1,6 250 2,0 of tension and Character	≥ with 50 25	α _g II,V II 1,65 2,00			000	50	1,20
50 1,6 250 2,0 of tension and Charac	50 25	1,65 2,00			250	250	2,00
250 2,0 of tension and Charac	25	2,00			with c ≥	with s ≥	α/g ⊥,V II
of tension and Charac		and a second second			50	50	1,00
Charac	ues of te	and choor			120	250	2,00
Charac		anu shear	load re	sista	nces		
		haracteristic l				and s≥s	
d/d		and a feat of a		conditi		A south a second	
d/d				o o n o n			d/d
	T	/d			w/d w/w	1.1	w/d
		1	-			1	w/w
C/24°C 80°C/50°C	40°C/24°C	/50°C 120°C/7	2°C 40°	C/24°C	80°C/50	C 120°C/72°C	All temperature
	10 012 0						ranges
NRk,b = NRk,p		= Nek.p		1	NRK,b = N	2) Bk.p	VRk,b ²⁾
				[kN]			
nean compressiv	sed mean	ressive stren	gth f _b 2	: 12 N/	mm ^{2 1)}		
	1.00				-		
1,5 1,5	1,5	,5 1,5		1,5	1,5	1,5	5,0
es must be multiplie e valid without conv ng to Annex C 3	es are valid	t conversion.	convers	ion fact	or accord	ing to Table C1	58. For stone:
	1			[T	Pital	I su
	δN/N	δN0	δN∞ [mm]		//V	δV0	oV∞ Imml
universit [uu		found	frond			a state of the second	
0.13 0.13*N	0.13	13*NRk / 3.5	2*8N0	0	,55	0,55*V _{Rk} /3,5	1,5*δνο
				0	,31	0,31*VRk/3,5	1.5*8vo
0,13 0,13*N		[mm] ,13*N _{Rk} / 3,5 t ITH Vinyles	[mm] 2*δNo ter for	0	n/kN] ,55 ,31	[mm] 0,55*V _{Вк} / 3,5 0,31*V _{Вк} / 3,5	
	oroto	on S9 with i		ter / Sormat ITH Vinylester for on S9 with insulation and Displacements	on S9 with insulation	on S9 with insulation	on S9 with insulation Annex C

Brick type	- 7-		Hollow clay						
Insulation material		-	Rock wool				100	-	
Density	ρ [kg/dn	n ³ 1	≥ 0,70			1		11	-
Normalised mean						1	The C	1 × 1	1
compressive strenght	fь [N/mn		≥ 10			1	1.9.0	K. J	
Conversion factor for low strengths	er compre	ssive	(f _b / 10) ^{0,5} s	≤ 1,0					
Code			EN 771-1:	2011+A1:20	15			P	1
Producer (Country)			e.g. THER	MOPOR Gn	nbH (DE)		100.00	11 1	
Brick dimensions	[mm]		248 x 365	x 249			-	and the	
Drilling method			Rotary drill	ling		_			
	10	9-	18	3 18	18		247		
Table C166, Installe	14			18					
Table C166: Installa	14			365	18			16-M8	IG-M10
Anchor size	14 -	[-]		18		M16 ≤ 10	IG-M6 ≤ 4	IG-M8 ≤ 4.	IG-M10 ≤ 4
Anchor size Installation torque	14	[-] [Nm]	r M8 ≤ 4	365 M10 ≤ 4	18 18 M12 ≤ 10	M16 ≤ 10	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size	14	[-]	r M8 ≤ 4 120	365 M10	18 18 M12 ≤ 10	M16 ≤ 10	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	14 tion para	[-] [Nm] [mm]	r M8 ≤ 4 120	365 M10 ≤ 4	18 18 M12 ≤ 10	M16 ≤ 10 ndicular	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance	14 tion para	[-] [Nm] [mm] [mm]	r M8 ≤ 4 120	365 M10 ≤ 4	18 18 M12 ≤ 10	M16 ≤ 10 ndicular 50	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance	14 tion para	[-] [Nm] [mm] [mm]	r M8 ≤ 4 120	365 M10 ≤ 4	18 18 M12 ≤ 10	M16 ≤ 10 ndicular 50 250	IG-M6 ≤ 4	≤ 4	
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing	tion para Tinst Ccr Cmin Scr, II Scr, I Smin, I; Smin, L	[-] [Nm] [mm] [mm] [mm] [mm]	r M8 ≤ 4 120	365 M10 ≤ 4 (for shear le	M12 ≤ 10 pads perper	M16 ≤ 10 ndicular 50 250 250	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C167: Reduct	tion para Tinst Ccr Cmin Scr, II Scr, I Smin, I; Smin, L	[-] [Nm] [mm] [mm] [mm] [mm]	r M8 ≤ 4 120	365 M10 ≤ 4 (for shear le	M12 ≤ 10 bads perper	M16 ≤ 10 ndicular 50 250 250	IG-M6 ≤ 4	≤ 4	≤ 4
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing	tion para Tinst Ccr Cmin Scr, II Scr, I Smin, I; Smin, L	[-] [Nm] [mm] [mm] [mm] [mm]	r M8 ≤ 4 120 single an	365 M10 ≤ 4 (for shear le	M12 ≤ 10 bads perper	M16 ≤ 10 ndicular 50 250 250 50	IG-M6 ≤ 4 to the free	≤ 4	≤ 4 = 250)
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C167: Reduct Tension load	14 tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] prs for	r M8 ≤ 4 120 single an	$\frac{18}{365}$ $\frac{M10}{\le 4}$ (for shear left) (for shear l	M12 ≤ 10 bads perper beeedge She ee edge αedge, v⊥	M16 ≤ 10 ndicular 50 250 250 50	IG-M6 ≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e with $c \geq 1$	≤ 4 = 250) dge αedge, ∨ II
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C167: Reduct Tension load	14 tion para Tinst Ccr Cmin Scr, II Scr, I Smin, II; Smin, L ion facto	[-] [Nm] [mm] [mm] [mm] [mm] prs for	r M8 ≤ 4 120 single an	$\frac{18}{365}$ $\frac{M10}{\leq 4}$ (for shear left) (for shear l	M12 ≤ 10 bads perper bads perper She ee edge αedge. v⊥ 0,25	M16 ≤ 10 ndicular 50 250 250 50	IG-M6 ≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e with $c \geq$ 50	≤ 4 = 250) dge α _{edge, V II} 1,00
Anchor size Installation torque Char. Edge distance Minimum Edge Distance Characteristic Spacing Minimum Spacing Table C167: Reduct Tension load	14 tion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, ⊥ ion facto	[-] [Nm] [mm] [mm] [mm] [mm] prs for	r M8 ≤ 4 120 single an	$\frac{18}{365}$ $\frac{M10}{\le 4}$ (for shear left) (for shear l	M12 ≤ 10 bads perper beeedge She ee edge αedge, v⊥	M16 ≤ 10 ndicular 50 250 250 50	IG-M6 ≤ 4 to the free Parallel to	≤ 4 edge: $c_{cr} =$ the free e with $c \geq 1$	≤ 4 : 250) dge αedge, V II

the state of the second se	or position p	the second second second second	r groups i hor. joint		and the second se		ositio	n perpen	dicular to hor.	joint
1	with c ≥	with s		2g II, N	100	- 1	with		with s ≥	αg 1, N
	50	50		1,00	1.1		50		50	1,00
	120	250		2,00			120	0	250	2,00
Table C169:	Factors fo	r ancho	r aroups i	under sh	ear load	3				
			parallel to		1		or pos	ition perm	pendicular to h	hor, joint
Shear load		with c			Ŷ.L		-	with c ≥	with s ≥	α _{g⊥,V⊥}
perpendicular	/ -	50	50	0,7				50	50	0,50
to the free		250	50	2,0	00			250	50	1,70
edge		250	250	2,0	00			250	250	2,00
Shear load	1	with c	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4		with c ≥	with s ≥	α/g ⊥,V II
parallel to the		50	50	1,6				50	50	1,15
free edge		120	250			-	-1	120	250	2,00
Table C170:	Character	istic valu	ues of ten	sion and	shear I	oad re	sista	nces	100.00	
Second Second	-1		1 m	Charac	cteristic F	Resistan	ces w	ith $c \ge c_c$, and s ≥ s _{cr}	
						Use	conditi	ion		
	Perforated sleeve	Effective Anchorage depth						w/d		d/d
	sle	Effective inchorage depth		d/d				w/w		w/d w/w
Anchor size	ated	And		1	1				1	All
	fors		40°C/24°C	80°C/50°C	120°C/72	°C 40°C	/24°C	80°C/50°	C 120°C/72°C	temperatur
	Per	_								ranges
		het						NRK.b = NR	VRk,b ²⁾	
		services and services whereas a	[mm] [kN] Iormalised mean compressive strength f _b ≥ 10 N/m							
M8	SH 12	80	ed mean c	ompressi	ve streng	gth t _b 2	10 N/	mm ^e 1	1	
M8 / M10/	5112	00				112		1.00	1.1.1.1	
IG-M6	SH 16	≥ 85	3,0	3,0	2,5	3	3,0	3,0	2,5	3,5
M12 / IG-M8	SH 20	≥ 85			_					1
M16 / IG-M10	SH 20	≥ 85	3,5	3,5	3,0	3	3,5	3,5	3,0	7,0
 For lower con with higher st N_{Rk,b,c} = N_{Rk,p} Table C171: 	c and VRk.c II =	hown value VRk.c±acc	es are valid v	without conv		conversio	on fact	or accordi	ng to Table C1	65. For stone
Ancho	size	het	8N/N	80		δN∞		//V	8V0	δV∞
		[mm]	[mm/kN]	[m	m]	[mm]	[mr	n/kN]	[mm]	[mm]
M8 – M IG-M6 -		all	0,13	0,13*N	0./25	0*5.10	0	,55	0,55*V _{Rk} / 3,5	1,5*8vo
M1		all	0,13	0,15 1	HK/ 0,0	2*δΝ0	0	,31	0,31*VRk/ 3,5	i 1,5*δvo
Injection systemasonry	em EJOT Mi	ultifix Vin	ylester / So	ormat ITH	Vinylest	er for			Annex C	

	Anaba	ar position	narallal to	hor inint	ear load	Anab	or nor	ition no	nondiaula	to b	or joint
	Anche	with c	$r parallel to r \ge 1 with s$			Anch		with c ≥	pendicular with s		
Shear load		50	2 with s 50		the second se		1-	with c ≥	50		CL g 1, V 1
perpendicular to the free		120	50	2,0			• -	120	50	_	0,35
edge		120						120	250		2,00
		with c						with c ≥		· · · · ·	
Shear load		50	50	1,3	the second se	-			WIGHT		αg ⊥.V II
parallel to the	100	120	250			1		50	50		1,00
free edge		120	500					120	250)	2,00
Table C177: C	haracter	istic val	ues of ten	sion and	shear lo	ad re	sista	nces			
				Charao	teristic R	esistan	ices w	vith c≥ c	cr and s≥	Scr	
		-61		1 10/00			condit		61	- UI	
	eve	age									d/d
	d slee	Effective Anchorage depth		d/d				w/d w/w			w/d w/w
Anchor size	Perforated sleeve	An	40°C/24°C	80°C/50°C	120°C/72°	°C 40°C	C/24°C	80°C/50	°C 120°C/7	2°C	All temperatur ranges
	٩.	het	N	Rk.b = NRK.p	2)		1	NRk,b = N	2) BK 0		VRk,b ²⁾
		[mm]		HAD - THIND		-	[kN]	4110,0 = 1	not b	-	- nate
		Normalis	ed mean co	ompressiv	e streng		· · · · · ·	(mm ^{2 1)}			(
M8 / M10/ IG-M6	SH 16	≥ 85	1,2	1,2	0,9	- 1. ·	1,2		2 0,	9	2,0
M12 / IG-M8	SH 20	≥ 85		1.15		110	10	11 11 1	-	- (3,0
M16 / IG-M10	SH 20	~ 05	1,5	1,5	1,2		1,5	1	1,5 1,2		
1) For lower comp	ressive stre			be multiplie	ed by the c	onversio	-				5,0 72. For stone
 For lower comp with higher street N_{Rk,b,c} = N_{Rk,p,c} & 	ressive stre ngths, the s and V _{RK,c II} =	ngths resis hown valu VRk.c + acc nents	es are valid v cording to An	be multiplie vithout conv	ed by the c		on fact	tor accord	ting to Table		
1) For lower comp	ressive stre ngths, the s and V _{RK,c II} = Displacen	ngths resis hown valu V _{Rk,c} +aco nents hef	es are valid v cording to An δN / N	be multiplie vithout conv nex C 3 δι	d by the coversion.	δN∞	on fact	tor accord	ling to Table δνο	e C1	72. For stone δV∞
 For lower comp with higher street NRK.b.c = NRK.p.c 2 Table C178: E Anchor s 	ressive stre ngths, the s and V _{RK,c11} = Visplacen ize	ngths resis hown valu VRk.c + acc nents	es are valid w cording to An δN / N	be multiplie vithout conv nex C 3	d by the coversion.		on fact	tor accord	ting to Table δνο [mm]	e C1	72. For stone δv∞ [mm]
 For lower comp with higher stree NRK.b.c = NRK.p.c 2 Table C178: E Anchor s M8 – M1 	ressive stre ngths, the s and V _{RK,c11} = Displacen ize 2 /	ngths resis hown valu V _{Rk,c} +aco nents hef	es are valid v cording to An <u>δN / N</u> [mm/kN]	be multiplie vithout conv nex C 3 δN [mi	NO M	δ № [mm]	on fact δ\ [mr	tor accord	ling to Table δνο	e C1	72. For stone δ∨∞ [mm]
 For lower comp with higher street NRK.b.c = NRK.p.c 2 Table C178: E Anchor s 	ressive stre ngths, the s and V _{RK,c11} = Displacen ize 2 /	ngths resis hown valu V _{RK,c} + acc nents het [mm]	es are valid v cording to An δN / N	be multiplie vithout conv nex C 3 δι	NO M	δN∞	on fact δ\ [mr 0	tor accord //V m/kN]	ting to Table δνο [mm]	e C1 / 3,5	72. For stone δV∞ [mm] 1,5*δνο
 For lower comp with higher street N_{Rk,b,c} = N_{Rk,p,c} a Table C178: E Anchor s M8 – M1 IG-M6 – 1 	ressive stre ngths, the s and V _{RKc II} = iisplacen ize 2 / M10	ngths resis hown valu VRk.c + aco nents het (mm] all all	es are valid w cording to An δN / N [mm/kN] 0,13	be multiplie vithout conv nex C 3 δι [mi 0,13*Ν	NO Rik / 3,5	δ№ [mm] 2*δ№	on fact δ\ [mr 0	v / V m/kN] 0,55	ting to Table δνο [mm] 0,55*Vթκ 0,31*Vթκ	e C1 / 3,5 / 3,5	72. For stone δV∞ [mm] 1,5*δvo 1,5*δvo
 For lower comp with higher street NRK.b.c = NBK.p.c & Table C178: E Anchor s M8 – M1 IG-M6 – 1 M16 	ressive stre ngths, the s and V _{Rk,c II} = isplacen ize 2 / M10 :haracter	ngths resis hown valu VRk.c+aco nents hef (mm] all all istic val	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten iffecitve	be multiplie vithout conv nex C 3 [m] 0,13*Ν sion and	NO Rik / 3,5	δ∾∞ [mm] 2*δ№ pad re Chara	on fact	v / V m/kN] 0,55 0,31 nces u stic Res	δνο [mm] 0,55*Vթκ 0,31*Vթκ nder fire stances	e C1 / 3,5 / 3,5	72. For stone δV∞ [mm] 1,5*δvo 1,5*δvo
 For lower comp with higher street NRK.b.c = NBK.p.c & Table C178: E Anchor s M8 – M1 IG-M6 – 1 M16 	ressive stre ngths, the s and V _{HK,c II} = isplacen ize 2 / M10 character Perforate	ngths resis hown valu VRk.c+aco nents hef (mm] all all istic val ed Anch	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve prage depth	be multiplie vithout conv nex C 3 [m] 0,13*Ν sion and	NO m] Rk / 3,5 shear lo	δ∾∞ [mm] 2*δ№ pad re Chara	on fact [mr 0 sista acteris	v / V m/kN] 0,55 0,31 nces u	ding to Table δνο [mm] 0,55*Vek 0,31*Vek nder fire stances Vek.b.fi	e C1 / 3,5 / 3,5	72. For stone δV∞ [mm] 1,5*δvo 1,5*δvo osure
 For lower comp with higher street NRK.b.c = NRK.p.c & Table C178: E Anchor s M8 – M1 IG-M6 – I M16 Table C179: C 	ressive stre ngths, the s and V _{Rk,c II} = isplacen ize 2 / M10 :haracter	ngths resis hown valu VRk.c+aco nents hef (mm] all all istic val ed Anch	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth her	be multiplie vithout conv nex C 3 [m] 0,13*Ν sion and	NO Rik / 3,5	δ∾∞ [mm] 2*δ№ pad re Chara	on fact	v / V m/kN] 0,55 0,31 nces u stic Res NRk.p.fr =	δνο [mm] 0,55*Vթκ 0,31*Vթκ nder fire stances	e C1 / 3,5 / 3,5	72. For stone δV∞ [mm] 1,5*δvo 1,5*δvo
 For lower comp with higher street NRK.b.c = NRK.p.c & Table C178: E Anchor s M8 – M1 IG-M6 – I M16 Table C179: C 	ressive stre ngths, the s and V _{RK,c II} = isplacen ize 2 / M10 character Sleeve	ngths resis hown valu VRKc+aco nents hef (mm) all all istic val ed Ancho	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth her [mm]	be multiplie vithout conv nex C 3 0,13*N sion and	ad by the conversion.	δ∾∞ [mm] 2*δ№ Dad re Chara Nai	οn fact	v / V m/kN] 0,55 0,31 nces u stic Res	bing to Table δV0 [mm] 0,55*V _{Rk} 0,31*V _{Rk} 0,31*V _{Rk} stances V _{Rk,b,fi} R90	e C1 / 3,5 / 3,5	δV∞ [mm] 1,5*8vo 0sure R120
 ¹⁾ For lower comp with higher street ²⁾ NRKB,c = NBK,p.c 2 Table C178: E Anchor s M8 – M1 IG-M6 – I M16 Table C179: C Anchor size 	ressive stre ngths, the s and V _{RK,c II} = lisplacen ize 2 / M10 character SH 16	ngths resid hown valu VRK.c+aco nents hef (mm) all all istic val ed Anche	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve brage depth her [mm] 130	be multiplie vithout conv nex C 3 0,13*N sion and	NO m] Rk / 3,5 shear lo	δ∾∞ [mm] 2*δ№ Dad re Chara Nai	on fact [mr 0 sista acteris	v / V m/kN] 0,55 0,31 nces u stic Res NRk.p.fr =	ding to Table δνο [mm] 0,55*Vek 0,31*Vek nder fire stances Vek.b.fi	e C1 / 3,5 / 3,5	72. For stone δV∞ [mm] 1,5*δvo 1,5*δvo osure
 ¹⁾ For lower comp with higher street ²⁾ NRK.b.c = NRK.p.c & Table C178: E Anchor street M8 – M1 IG-M6 – I M16 Table C179: C Anchor size M8 / M10 / IG-M6 	ressive stre ngths, the s and V _{RK,c II} = isplacen ize 2 / M10 character Sleeve	ngths resis hown valu VRkc + aco nents (mm] all all istic val ed Anch	es are valid w cording to An δN / N [mm/kN] 0,13 ues of ten ffecitve orage depth her [mm]	be multiplie vithout conv nex C 3 0,13*Ν sion and F	ad by the conversion. and by the conversion. and an	δ∾ [mm] 2*δΝο Dad re Char Na	0 fact δ [mr 0 0 sista acteris k.b.fi = 1 R60 0,21	v / V m/kN] 0,55 0,31 nces u stic Res NRk.p.fr =	bing to Table δV0 [mm] 0,55* VRk 0,31* VRk nder fire stances VRk.b.fi R90 -1)	e C1 / 3,5 / 3,5	δV∞ [mm] 1,5*8vo 0sure R120
 ¹⁾ For lower comp with higher street ²⁾ N_{Rk,b,c} = N_{Rk,p,c} at Table C178: E Anchor s M8 – M1 IG-M6 – M M6 – M16 Table C179: C Anchor size M8 / M10 / IG-M6 M12 / IG-M8 	ressive stre ngths, the s and V _{RKc II} = iisplacen ize 2 / M10 Character Perforate sleeve SH 16 SH 20 SH 20	ngths resis hown valu VRkc + aco nents (mm] all all istic val ed Anch	es are valid w cording to An <u>δN / N</u> [mm/kN] 0,13 ues of ten ffective brage depth her [mm] 130 ≥ 130	be multiplie vithout conv nex C 3 0,13*Ν sion and F	ad by the conversion.	δ∾ [mm] 2*δΝο Dad re Char Na	οn fact	v / V m/kN] 0,55 0,31 nces u stic Res NRk.p.fr =	bing to Table δV0 [mm] 0,55*V _{Rk} 0,31*V _{Rk} 0,31*V _{Rk} stances V _{Rk,b,fi} R90	e C1 / 3,5 / 3,5	72. For stone [mm] 1,5*8vo 0sure R120 -1)
 For lower comp with higher street NRIKD, C = NBK, p.C. 2 Table C178: C Anchor s M8 – M1 IG-M6 – I M16 Table C179: C Anchor size M8 / M10 / IG-M6 M12 / IG-M8 M16 / IG-M10 	ressive stre ngths, the s and V _{RKc II} = iisplacen ize 2 / M10 Character Perforate sleeve SH 16 SH 20 SH 20 SH 20 assessed	ngths resis hown valu VRkc + aco nents (mm] all all istic val ed Anch	es are valid w cording to An δ_N / N [mm/kN] 0,13 ues of ten ffecitve orage depth her [mm] 130 \geq 130 \geq 130	be multiplie vithout conv nex C 3 0,13*N sion and F 0 0	ad by the circle resion. 10 m] Rk / 3,5 shear lo 330 ,29 ,29	δ∾ [mm] 2*δΝο Dad re Chara Na	0 fact δ [mr 0 0 sista acteris k.b.fi = 1 R60 0,21	v / V m/kN] 0,55 0,31 nces u stic Res NRk.p.fr =	bing to Table δV0 [mm] 0,55* VRk 0,31* VRk nder fire stances VRk.b.fi R90 -1)	e C1 / 3,5 / 3,5	72. For stone [mm] 1,5*8vo 0sure R120 -1)

2000	0: Stone de		-	Hollow co	ncrete brick	· · · · · · · · · · · · · · · · · · ·				
Brick type				Bloc Creu	x B40				-	0.
Density		p [kg/dr	n³]	≥ 0,8				1	-	
Normalised r compressive		fb [N/mr	m²]	≥ 5,2			1.1	X	~	
	actor for lowe	er compre	essive	(f _b / 5,2) ^{0,5}	≤ 1,0					
Code				EN 772-1			1.0		1	
Producer (Co	ountry)			e.g. Lerou	IX (FR)		1			
Brick dimens		[mm]		500 x 200	x 200					
Drilling meth	od		-	Rotary dri	lling					
								F	21	
	17	130	17	-	30 95	17	130			
	17 17 1: Installat		ameter	4	95			17		
Anchor size	1: Installat	ion para	ameter	4 M8	95 M10	M12	M16	17 	IG-M8	
Anchor size Installation to	1: Installat	ion para	ameter [-] [Nm]	4 	95 M10 ≤ 4	M12 ≤ 4	M16 ≤ 4	17 	IG-M8 ≤ 4	≤ 4
Anchor size Installation to Char. Edge o	1: Installat	ion para	ameter	4 	95 M10	M12 ≤ 4	M16 ≤ 4	17 	IG-M8 ≤ 4	≤ 4
Anchor size Installation to Char. Edge o Minimum Ed	1: Installat	ion para	ameter [-] [Nm] [mm]	4 	95 M10 ≤ 4	M12 ≤ 4	M16 ≤ 4 endicular t	17 	IG-M8 ≤ 4	
Anchor size Installation to Char. Edge o	1: Installat	ion para Tinst Cer Cmin	ameter [-] [Nm] [mm] [mm]	4 	95 M10 ≤ 4	M12 ≤ 4	M16 ≤ 4 endicular f 50	17 	IG-M8 ≤ 4	≤ 4
Anchor size Installation to Char. Edge o Minimum Ed	1: Installat	Tinst Ccr Cmin Scr, II	ameter [-] [Nm] [mm] [mm] [mm]	4 	95 M10 ≤ 4	M12 ≤ 4	M16 ≤ 4 endicular t 50 170	17 	IG-M8 ≤ 4	≤ 4
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp	1: Installat	Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	4 	95 M10 ≤ 4 (for shear	M12 ≤ 4 loads perpe	M16 ≤ 4 endicular t 50 170 200	17 	IG-M8 ≤ 4	≤ 4
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp Table C182	1: Installat orque distance ge Distance ic Spacing acing 2: Reductio	Tinst Ccr Cmin Scr, II Scr, 1 Smin, II; Smin, 1	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120	95 M10 ≤ 4 (for shear chors at t	M12 ≤ 4 loads perpe	M16 ≤ 4 endicular t 50 170 200	17 $ G-M6 \le 4$ to the free	IG-M8 ≤ 4 edge: c _{cr} =	<u>≤</u> 4 170)
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp Table C182	1: Installat orque distance ge Distance ic Spacing acing 2: Reduction	Tinst Ccr Cmin Scr, II Ser, L Smin, II; Smin, L	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120	95 M10 ≤ 4 (for shear chors at t ular to the f	M12 ≤ 4 loads perpe he edge Sh ree edge	M16 ≤ 4 endicular t 50 170 200 50 ear load	17 $ G-M6 \le 4$ to the free of the fr	IG-M8 ≤ 4 edge: c _{cr} =	≤ 4 170) dge
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp Table C182	1: Installat orque distance ge Distance ic Spacing acing 2: Reduction Tension load with c ≥	ion para Tinst Ccr Cmin Scr, II Scr, ⊥ Smin, II: Smin, ⊥ On facto	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120	95 M10 ≤ 4 (for shear) chors at t ular to the f with c ≥	M12 ≤ 4 loads perpe he edge Sh ree edge αedge, v⊥	M16 ≤ 4 endicular t 50 170 200 50 ear load	$ G-M6 \le 4$ to the free of t	IG-M8 ≤ 4 edge: c _{cr} = the free e	≤ 4 170) dge αedge, V ⊪
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp Table C182	1: Installat orque distance ge Distance ic Spacing acing 2: Reduction	ion para Tinst Ccr Cmin Scr, 1 Scr, 1 Smin, 11; Smin, 1 Smin, 2 On facto αedge, r 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] [mm]	M8 ≤ 4 120 single an Perpendic	95 M10 ≤ 4 (for shear chors at t ular to the f	M12 ≤ 4 loads perpe	M16 ≤ 4 endicular t 50 170 200 50 ear load	17 $ G-M6 \le 4$ to the free of the fr	IG-M8 ≤ 4 edge: c _{cr} =	dge <u>aedge, v∥</u> 1,00
Anchor size Installation to Char. Edge o Minimum Ed Characteristi Minimum Sp Table C182	1: Installat orque distance ge Distance ic Spacing acing 2: Reduction Tension load with c ≥ 50	ion para Tinst Ccr Cmin Sor, II Scr, ⊥ Smin, II; Smin, ⊥ on factor αedge, r 1,00 1,00	ameter [-] [Nm] [mm] [mm] [mm] [mm] ors for s	M8 ≤ 4 120 single an Perpendic	95 M10 ≤ 4 (for shear) chors at t ular to the f with c \geq 50 170	M12 ≤ 4 loads perper he edge Shr ree edge α _{edge} , v⊥ 0,35 1,00	M16 ≤ 4 endicular t 50 170 200 50 ear load	$ G-M6 \le 4$ to the free of t	$ G-M8 \le 4$ edge: c _{cr} = the free end the free end the c > 50	≤ 4 170) dge αedge, V ⊪

Anch	nor position p	parallel to I	hor. joint			Anch	or po	sition perpe	endicular to hor.	joint
	with c ≥	with s	≥ ag	II. Ń	, with a		with c ≥	with s ≥	αg 1, N	
1 100	50	50	1	1,50				50	50	1,40
	50	170	2	00				50	200	2,00
	120	170	2,00			4	120		200	2,00
Table C184:			r groups u parallel to h		ear loa	-	ncho	r position p	erpendicular to I	hor joint
Shear load		with c			V.I.			with c		α _g ⊥.v⊥
perpendicular	1.00	50	50	4			100	50	50	0,35
to the free		120	50		1,30			120	50	0,85
edge	1	120	170	2,0				120	200	2,00
	A	with c	≥ with s ≥	≥ ag II,	VII :			with c	≥ with s ≥	ag 1,V II
Shear load		50	50	1,1		_		50	50	1,00
parallel to the free edge		120	170	20	2,00			50	200	2,00
ice eage	1	120	170 2,0		U ÷			120	200	2,00
Table C185:	Character	istic valu	ues of tens							
		1.11	-	Charac	teristic	Resis	stanc	es with c≥	c _{cr} and s ≥ s _{cr}	
		0				U	se co	ondition		
	Perfor	Effective Anchorage depth	d/d				w/d w/w			d/d w/d w/w
Anchor size	ated sleeve		40°C/24°C 8	0°C/50°C	120°C/7	2°C 4	10°C/2	24°C 80°C/5	0°C 120°C/72°C	All temperatur
					1.		1			ranges
		het	Ne	Ik,b = NRK,p	NRk,p ²⁾		NRk,b =	Nakip ²⁾	VRk,b ⁽²⁾	
		[mm]			-		[k	N]		
Para Course		Normalise	ed mean co	mpressiv	e stren	gth f	b ≥ 5	,2 N/mm ^{2 1})	
M8 / M10/ IG-M6	SH 16	130	2,0	1.5	1.2		2,	0 1,	5 1,2	6,0
M12 / M16 / IG-M8 / IG-M1		≥ 130								
	c and Vekc II =	hown value VRk,c±acc	es are valid wi ording to Ann	thout conv		conve	ersior		rding to Table C1	
Ancho	r size	hef	δN/N	δN		δN		δv / V	δνο	õV∞
1.	10201	[mm]	[mm/kN]	[mi	m]	[mr	m]	[mm/kN]	[mm]	[mm]
M8 – 1 IG-M6		all	0,13	0,13*N	125	2*8	NIO	0,55	0,55*V _{Rk} / 3,5	5 1,5*δνο
Mi		all	0,10	0,10 14	AK / 0,0	2.0	NU	0,31	0,31*V _{RK} /3,5	5 1,5*δνο
	FIOTIN	Jateter Miles	ylester / Soi	mat ITH	Vinvlee	tor	or	_		<u> </u>

Brick type				Solid light brick	weight con	crete			-			
Density		p [kg/dr	m ³]	Drick ≥ 0,6				1	Star Street			
Normalised r		f _b [N/mr		≥2								
Conversion f strengths	actor for lowe	r compre	essive	$(f_b / 2)^{0.5} \le$	1,0	_				E.C.		
Code				EN 771-3:	2011+A1:2	015	Ren a	and the second				
Producer (Co	ountry)			e.g. Bisoth	nerm (DE)		1 Contraction	-	and the			
Brick dimens	ions	[mm]		≥ 240 x 30	00 x 113			9-0 - Carriella	and the second second			
Drilling meth	od			Rotary dril	lling							
Table C18	3: Installat	ion para	ameter					-				
Anchor size	-		[-]	M8	M10	M12	M16	IG-M	6 IG-M8	IG-M10		
Installation to	orque	Tinst	[Nm]	≤2	≤ 2	≤2	≤ 2	≤ 2	≤ 2	≤2		
Char. Edge d	listance	Cor	[mm]				150					
Minimum Ed	ge Distance	Cmin	[mm]				60					
		Scr. II	[mm]				300	-				
Characteristi	c Spacing	Scr. 1	[mm]				300	-				
Minimum Sp	acing	Smin, II; Smin, ⊥	[mm]				120					
	Fension load with c ≥	Cledge, I		Perpendic	ular to the I with c ≥		hear load	Parallel to the free edge				
	60	1,00	-		60	0,25		1	60 with c ≥	α _{edge} , v II 0,40		
here we have	150	1,00			150	1,00		- •] =	100	1,00		
Table C19): Factors	for anc	hor gr	oups unde	er tension	load						
A	nchor position	parallel	to hor.	joint	- 1 - E	Anchor	position p	erpendic	ular to hor. j	oint		
1	with c ≥	Wi	hs≥	Ølg II, N			with c ≥	W	ith s ≥	α _{g ⊥.N}		
	60		20	1,00			60		120	1,00		
88	150	1	300	2,00			150	={ =::	300	2,00		
88	. Eastara	for anc	hor gr	oups unde	er shear l	oad						
Table C19	r. Factors	hor posit	tion par	allel to hor.	joint	Anc	hor positio	n perper	dicular to ho	or. joint		
		non poon		with s ≥	αg II,V ⊥	· · · · · ·		hc≥	with s ≥	αlg⊥, v⊥		
Table C19		with	102	100	0,25		· · · · ·	60	120	0,25		
Table C19 Shear load perpendicula	And	with	50	120				50	120	1,00		
Table C19 Shear load perpendicula to the free	And	with 6	50 50	120	1,00	1		50	300	2,00		
Table C19 Shear load perpendicula to the free	And	with 6 1	50 50 50	120 300	1,00 2,00	()(C				Clg⊥.VⅡ		
Table C19 Shear load perpendicula to the free edge	And	with (1 1 with with	60 50 50 n.c.≥	120 300 with s ≥	2,00 α _g II.V II	1, 10 1, 10	wit	hc≥	with s ≥			
Table C19 Shear load perpendicula to the free edge Shear load	.r And	with e 1 with 1 with e	60 50 50 1 c ≥ 60	120 300 with s ≥ 120	2,00 α _{g II.V II} 0,40		wit	60	120	0,40		
	.r	with (1 1 1 1 1 (1 (1 1 (1 1 (1 1 (1 1 1 (1 1 1 (1 1 1 (1 1 1 1 1 1 1 1 1 1 1 1 1	60 50 50 1 c ≥ 60 00	120 300 with s ≥ 120 120	2,00 α _{g II.V II} 0,40 1,00		wit	60 00	120 120	0,40 1,00		
Table C19 Shear load perpendicula to the free edge Shear load parallel to the	.r And	with (1 1 1 1 1 (1 (1 1 (1 1 (1 1 (1 1 1 (1 1 1 (1 1 1 (1 1 1 1 1 1 1 1 1 1 1 1 1	60 50 50 1 c ≥ 60	120 300 with s ≥ 120	2,00 α _{g II.V II} 0,40		wit	60	120	0,40		

				Charao	cteristic Re	sistan	ces w	rith c ≥ c _{cr}	and s ≥ s _{cr}			
			Lice condition									
Apphoriza	d sleeve	Effective Anchorage depth	d/d					d/d w/d w/w				
Anchor size	Perforated sleeve	Ă Ă	40°C/24°C	80°C/50°C	120°C/72°C	2 40°C	:/24°C	80°C/50°C	120°C/72°C	All		
		h _{ef}	Ν	J _{Rk,b} = N _{Rk,p}	2)		١	NRK,b = NRK	2) ,p	V _{Rk,b} ²⁾		
		[mm]										
		Normalis	sed mean	compressi	ve streng	th f _b ≥	2 N/r	nm² 1)				
M8	-	80										
M10 / IG-M6	-	90	3,0	2,5	2,0	2	,5	2,0	1,5			
M12 / M16 / G-M8 / IG-M10	-	100								3,0		
M8	SH 12	80								0,0		
M8 / M10/ IG-M6	SH 16	≥ 85	2,5	2,5	2,0	2	,5	2,0	1,5			
M12 / M16 / G-M8 / IG-M10	SH 20	≥ 85										
able C193: Di Anchor siz		hef	δΝ / Ν	δΝ	10	δN∞		/ / V	δνο	δ∨∞		
		[mm]	[mm/kN]	[m	m] [mm]	[mr	n/kN]	[mm]	[mm]		
M8 – M12 IG-M6 – M		all	0,1	0,1*N _F	×/35 2	*δΝ0	0	0,3	0,3*V _{Rk} / 3,5	1,5*δv		
		all		0,114	ικ / 0,0 <u>Ζ</u>	ONU	(),1 ·	0,1*V _{Rk} /3,5	1,5* δν		
M16												
M16												